These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18651835)
41. Characterization of sequence and structural features of the Candida krusei enolase. Gandhi NS; Young K; Warmington JR; Mancera RL In Silico Biol; 2008; 8(5-6):449-60. PubMed ID: 19374130 [TBL] [Abstract][Full Text] [Related]
42. Chemoselective synthesis of peptides containing major advanced glycation end-products of lysine and arginine. Gruber P; Hofmann T J Pept Res; 2005 Sep; 66(3):111-24. PubMed ID: 16083438 [TBL] [Abstract][Full Text] [Related]
43. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Gao Y; Wang Y Biochemistry; 2006 Dec; 45(51):15654-60. PubMed ID: 17176087 [TBL] [Abstract][Full Text] [Related]
44. DNA-glycation leads to depurination by the loss of N2-carboxyethylguanine in vitro. Seidel W; Pischetsrieder M Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1165-70. PubMed ID: 9846899 [TBL] [Abstract][Full Text] [Related]
45. Processing of protein glycation, oxidation and nitrosation adducts in the liver and the effect of cirrhosis. Ahmed N; Thornalley PJ; Lüthen R; Häussinger D; Sebekova K; Schinzel R; Voelker W; Heidland A J Hepatol; 2004 Dec; 41(6):913-9. PubMed ID: 15582123 [TBL] [Abstract][Full Text] [Related]
46. Autofluorescence characterization of advanced glycation end products of hemoglobin. Vigneshwaran N; Bijukumar G; Karmakar N; Anand S; Misra A Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):163-70. PubMed ID: 15556435 [TBL] [Abstract][Full Text] [Related]
47. Identification of CML-modified proteins in hemofiltrate of diabetic patients by proteome analysis. Schmitt S; Linder M; Ständker L; Hammes HP; Preissner KT Exp Clin Endocrinol Diabetes; 2008 Jan; 116(1):26-34. PubMed ID: 17926233 [TBL] [Abstract][Full Text] [Related]
48. Identification of N(omega)-carboxymethylarginine as a novel acid-labileadvanced glycation end product in collagen. Iijima K; Murata M; Takahara H; Irie S; Fujimoto D Biochem J; 2000 Apr; 347 Pt 1(Pt 1):23-7. PubMed ID: 10727397 [TBL] [Abstract][Full Text] [Related]
49. Strategies for proteomic analysis of non-enzymatically glycated proteins. Priego Capote F; Sanchez JC Mass Spectrom Rev; 2009; 28(1):135-46. PubMed ID: 18949816 [TBL] [Abstract][Full Text] [Related]
50. Fe2+-catalyzed non-enzymatic glycosylation alters collagen conformation during AGE-collagen formation in vitro. Xiao H; Cai G; Liu M Arch Biochem Biophys; 2007 Dec; 468(2):183-92. PubMed ID: 17964528 [TBL] [Abstract][Full Text] [Related]
51. Differential susceptibility of Plasmodium falciparum versus yeast and mammalian enolases to dissociation into active monomers. Pal-Bhowmick I; Krishnan S; Jarori GK FEBS J; 2007 Apr; 274(8):1932-45. PubMed ID: 17371507 [TBL] [Abstract][Full Text] [Related]
52. Investigation of pathways of advanced glycation end-products accumulation in macrophages. Nagai R; Fujiwara Y; Mera K; Otagiri M Mol Nutr Food Res; 2007 Apr; 51(4):462-7. PubMed ID: 17390398 [TBL] [Abstract][Full Text] [Related]
53. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes. Lapolla A; Fedele D; Traldi P Mass Spectrom Rev; 2000; 19(5):279-304. PubMed ID: 11079246 [TBL] [Abstract][Full Text] [Related]
54. Minimum stable structure of the receptor for advanced glycation end product possesses multi ligand binding ability. Kumano-Kuramochi M; Ohnishi-Kameyama M; Xie Q; Niimi S; Kubota F; Komba S; Machida S Biochem Biophys Res Commun; 2009 Aug; 386(1):130-4. PubMed ID: 19501570 [TBL] [Abstract][Full Text] [Related]
55. The in vitro glycation of human serum albumin in the presence of Zn(II). Seneviratne C; Dombi GW; Liu W; Dain JA J Inorg Biochem; 2011 Dec; 105(12):1548-54. PubMed ID: 22071077 [TBL] [Abstract][Full Text] [Related]
56. Characterization of a temperature-sensitive mutation that impairs the function of yeast tRNA nucleotidyltransferase. Shan X; Russell TA; Paul SM; Kushner DB; Joyce PB Yeast; 2008 Mar; 25(3):219-33. PubMed ID: 18302315 [TBL] [Abstract][Full Text] [Related]
57. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal. Lima M; Moloney C; Ames JM Amino Acids; 2009 Mar; 36(3):475-81. PubMed ID: 18516664 [TBL] [Abstract][Full Text] [Related]
58. Application of phenylboronic acid modified hydrogel affinity chips for high-throughput mass spectrometric analysis of glycated proteins. Gontarev S; Shmanai V; Frey SK; Kvach M; Schweigert FJ Rapid Commun Mass Spectrom; 2007; 21(1):1-6. PubMed ID: 17125156 [TBL] [Abstract][Full Text] [Related]
59. Preparation of bioactive and surface functional oligomannosyl neoglycoprotein using extracellular pH-sensitive glycosylation of mutant lysozyme having N-linked signal sequence in yeast. Nakamura S; Ban M; Kato A Bioconjug Chem; 2006; 17(5):1170-7. PubMed ID: 16984125 [TBL] [Abstract][Full Text] [Related]
60. Role of zinc along with ascorbic acid and folic acid during long-term in vitro albumin glycation. Tupe RS; Agte VV Br J Nutr; 2010 Feb; 103(3):370-7. PubMed ID: 19849871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]