These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18652491)

  • 1. Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments.
    Lohman JR; Remington SJ
    Biochemistry; 2008 Aug; 47(33):8678-88. PubMed ID: 18652491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators.
    Hanson GT; Aggeler R; Oglesbee D; Cannon M; Capaldi RA; Tsien RY; Remington SJ
    J Biol Chem; 2004 Mar; 279(13):13044-53. PubMed ID: 14722062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased redox-sensitive green fluorescent protein reduction potential in the endoplasmic reticulum following glutathione-mediated dimerization.
    Sarkar DD; Edwards SK; Mauser JA; Suarez AM; Serowoky MA; Hudok NL; Hudok PL; Nuñez M; Weber CS; Lynch RM; Miyashita O; Tsao TS
    Biochemistry; 2013 May; 52(19):3332-45. PubMed ID: 23594148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring intracellular redox conditions in the endoplasmic reticulum of living yeasts.
    Delic M; Mattanovich D; Gasser B
    FEMS Microbiol Lett; 2010 May; 306(1):61-6. PubMed ID: 20337710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-engineering redox-sensitive green fluorescent protein for improved response rate.
    Cannon MB; Remington SJ
    Protein Sci; 2006 Jan; 15(1):45-57. PubMed ID: 16322566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein.
    Ostergaard H; Henriksen A; Hansen FG; Winther JR
    EMBO J; 2001 Nov; 20(21):5853-62. PubMed ID: 11689426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria.
    Aslund F; Berndt KD; Holmgren A
    J Biol Chem; 1997 Dec; 272(49):30780-6. PubMed ID: 9388218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon.
    Aronson DE; Costantini LM; Snapp EL
    Traffic; 2011 May; 12(5):543-8. PubMed ID: 21255213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Redox-Sensitive GFP Cysteine Redox State via Gel-Based Read-Out.
    Bohle F; Meyer AJ; Mueller-Schuessele SJ
    Methods Mol Biol; 2023; 2564():259-268. PubMed ID: 36107347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time monitoring of redox changes in the mammalian endoplasmic reticulum.
    van Lith M; Tiwari S; Pediani J; Milligan G; Bulleid NJ
    J Cell Sci; 2011 Jul; 124(Pt 14):2349-56. PubMed ID: 21693587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring intracellular redox conditions using GFP-based sensors.
    Björnberg O; Ostergaard H; Winther JR
    Antioxid Redox Signal; 2006; 8(3-4):354-61. PubMed ID: 16677081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal imaging of glutathione redox potential in living plant cells.
    Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ
    J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-sensitive green fluorescent protein: probes for dynamic intracellular redox responses. A review.
    Cannon MB; Remington SJ
    Methods Mol Biol; 2008; 476():51-65. PubMed ID: 19157008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Cellular Oxidation using a Subcellular Compartment-Specific Redox-Sensitive Green Fluorescent Protein.
    Tascioglu Aliyev A; LoBianco F; Krager KJ; Aykin-Burns N
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Polysulfide-Sensitive GFPs for Real-Time Analysis of Polysulfides in Live Cells and Subcellular Organelles.
    Hu X; Li H; Zhang X; Chen Z; Zhao R; Hou N; Liu J; Xun L; Liu H
    Anal Chem; 2019 Mar; 91(6):3893-3901. PubMed ID: 30793598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.
    Frand AR; Kaiser CA
    Mol Biol Cell; 2000 Sep; 11(9):2833-43. PubMed ID: 10982384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65-72 disulfide bond: characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72.
    Iwaoka M; Juminaga D; Scheraga HA
    Biochemistry; 1998 Mar; 37(13):4490-501. PubMed ID: 9521769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1.
    Sevier CS; Kaiser CA
    Mol Biol Cell; 2006 May; 17(5):2256-66. PubMed ID: 16495342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins.
    Loferer H; Wunderlich M; Hennecke H; Glockshuber R
    J Biol Chem; 1995 Nov; 270(44):26178-83. PubMed ID: 7592822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.