BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18652492)

  • 1. Molecular architectures for electrocatalytic amplification of oligonucleotide hybridization.
    Mir M; Alvarez M; Azzaroni O; Tiefenauer L; Knoll W
    Anal Chem; 2008 Sep; 80(17):6554-9. PubMed ID: 18652492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical DNA sensors based on enzyme dendritic architectures: an approach for enhanced sensitivity.
    Domínguez E; Rincón O; Narváez A
    Anal Chem; 2004 Jun; 76(11):3132-8. PubMed ID: 15167793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes.
    Gasparac R; Taft BJ; Lapierre-Devlin MA; Lazareck AD; Xu JM; Kelley SO
    J Am Chem Soc; 2004 Oct; 126(39):12270-1. PubMed ID: 15453752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplified label-free electrocatalytic detection of DNA in the presence of calcium ions.
    de-los-Santos-Alvarez P; de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Biosens Bioelectron; 2006 Feb; 21(8):1507-12. PubMed ID: 16095895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer.
    Kim E; Kim K; Yang H; Kim YT; Kwak J
    Anal Chem; 2003 Nov; 75(21):5665-72. PubMed ID: 14588003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates.
    Liu J; Tian S; Tiefenauer L; Nielsen PE; Knoll W
    Anal Chem; 2005 May; 77(9):2756-61. PubMed ID: 15859590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different supramolecular architectures for oligonucleotide biosensing.
    Mir M; Alvarez M; Azzaroni O; Knoll W
    Langmuir; 2008 Nov; 24(22):13001-6. PubMed ID: 18947242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical sensing of DNA hybridization based on duplex-specific charge compensation.
    Park N; Hahn JH
    Anal Chem; 2004 Feb; 76(4):900-6. PubMed ID: 14961719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemical sensor for fast reagent-free DNA detection.
    Komarova E; Aldissi M; Bogomolova A
    Biosens Bioelectron; 2005 Jul; 21(1):182-9. PubMed ID: 15967367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical study of enzymatic oligonucleotide digestion.
    Hillier SC; Frost CG; Jenkins AT; Braven HT; Keay RW; Flower SE; Clarkson JM
    Bioelectrochemistry; 2004 Jun; 63(1-2):307-10. PubMed ID: 15110293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation detection by electrocatalysis at DNA-modified electrodes.
    Boon EM; Ceres DM; Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2000 Oct; 18(10):1096-100. PubMed ID: 11017050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon.
    Wu ZS; Jiang JH; Shen GL; Yu RQ
    Hum Mutat; 2007 Jun; 28(6):630-7. PubMed ID: 17309058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode.
    Jenkins DM; Chami B; Kreuzer M; Presting G; Alvarez AM; Liaw BY
    Anal Chem; 2006 Apr; 78(7):2314-8. PubMed ID: 16579614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic-like streptavidin/alkaline phosphatase nanoarchitectures for amplified electrochemical sensing of DNA sequences.
    Lucarelli F; Marrazza G; Mascini M
    Langmuir; 2006 Apr; 22(9):4305-9. PubMed ID: 16618179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials.
    Mir M; Cameron PJ; Zhong X; Azzaroni O; Alvarez M; Knoll W
    Talanta; 2009 May; 78(3):1102-6. PubMed ID: 19269478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical rectification by redox-labeled bioconjugates: molecular building blocks for the construction of biodiodes.
    Azzaroni O; Mir M; Alvarez M; Tiefenauer L; Knoll W
    Langmuir; 2008 Mar; 24(6):2878-83. PubMed ID: 18237222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA intercalation-based electrochemical method for detection of Chlamydia trachomatis utilizing peroxidase-catalyzed signal amplification.
    Won BY; Lee DW; Shin SC; Cho DY; Lee SS; Yoon HC; Park HG
    Biosens Bioelectron; 2008 Dec; 24(4):665-9. PubMed ID: 18657965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendrimers-based DNA biosensors for highly sensitive electrochemical detection of DNA hybridization using reporter probe DNA modified with Au nanoparticles.
    Li G; Li X; Wan J; Zhang S
    Biosens Bioelectron; 2009 Jul; 24(11):3281-7. PubMed ID: 19450970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the electrostatic microenvironment on the observed redox potential of electroactive supramolecular bioconjugates.
    Azzaroni O; Yameen B; Knoll W
    Phys Chem Chem Phys; 2008 Dec; 10(46):7031-8. PubMed ID: 19030599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.