BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18652547)

  • 1. Isolation of human multipotent neural progenitors from adult filum terminale.
    Varghese M; Olstorn H; Berg-Johnsen J; Moe MC; Murrell W; Langmoen IA
    Stem Cells Dev; 2009 May; 18(4):603-13. PubMed ID: 18652547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons.
    Jha RM; Liu X; Chrenek R; Madsen JR; Cardozo DL
    Neurosurgery; 2013 Jan; 72(1):118-29; discussion 129. PubMed ID: 23096415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale.
    Jha RM; Chrenek R; Magnotti LM; Cardozo DL
    PLoS One; 2013; 8(6):e65974. PubMed ID: 23762453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring atypical locations of mammalian neural stem cells: the human filum terminale.
    Varghese M; Olstorn H; Murrell W; Langmoen IA
    Arch Ital Biol; 2010 Jun; 148(2):85-94. PubMed ID: 20830971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons.
    Moe MC; Varghese M; Danilov AI; Westerlund U; Ramm-Pettersen J; Brundin L; Svensson M; Berg-Johnsen J; Langmoen IA
    Brain; 2005 Sep; 128(Pt 9):2189-99. PubMed ID: 15958504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord.
    Mothe AJ; Kulbatski I; Parr A; Mohareb M; Tator CH
    Cell Transplant; 2008; 17(7):735-51. PubMed ID: 19044201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord.
    Mothe A; Tator CH
    J Vis Exp; 2015 May; (99):e52732. PubMed ID: 26067928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and characterization of progenitor cells within the human filum terminale.
    Arvidsson L; Fagerlund M; Jaff N; Ossoinak A; Jansson K; Hägerstrand A; Johansson CB; Brundin L; Svensson M
    PLoS One; 2011; 6(11):e27393. PubMed ID: 22096566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cells from the adult human brain develop into functional neurons in culture.
    Westerlund U; Moe MC; Varghese M; Berg-Johnsen J; Ohlsson M; Langmoen IA; Svensson M
    Exp Cell Res; 2003 Oct; 289(2):378-83. PubMed ID: 14499639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the neurogenic potential of multipotent skin-derived precursors.
    Fernandes KJ; Kobayashi NR; Gallagher CJ; Barnabé-Heider F; Aumont A; Kaplan DR; Miller FD
    Exp Neurol; 2006 Sep; 201(1):32-48. PubMed ID: 16678161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors.
    Avaliani N; Sørensen AT; Ledri M; Bengzon J; Koch P; Brüstle O; Deisseroth K; Andersson M; Kokaia M
    Stem Cells; 2014 Dec; 32(12):3088-98. PubMed ID: 25183299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field stimulation induced neuronal differentiation of filum terminale derived neural progenitor cells.
    Dong ZY; Pei Z; Li Z; Wang YL; Khan A; Meng XT
    Neurosci Lett; 2017 Jun; 651():109-115. PubMed ID: 28476410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural progenitors of the postnatal and adult mouse forebrain retain the ability to self-replicate, form neurospheres, and undergo multipotent differentiation in vivo.
    Neumeister B; Grabosch A; Basak O; Kemler R; Taylor V
    Stem Cells; 2009 Mar; 27(3):714-23. PubMed ID: 19096037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of human embryonic neuronal cells procured by non-enzyme method].
    Sukach AN
    Tsitologiia; 2005; 47(3):207-13. PubMed ID: 16706164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.
    Chrenek R; Magnotti LM; Herrera GR; Jha RM; Cardozo DL
    J Comp Neurol; 2017 Feb; 525(3):661-675. PubMed ID: 27511739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural potential of a stem cell population in the adipose and cutaneous tissues.
    Zavan B; Michelotto L; Lancerotto L; Della Puppa A; D'Avella D; Abatangelo G; Vindigni V; Cortivo R
    Neurol Res; 2010 Feb; 32(1):47-54. PubMed ID: 20092695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ventriculus terminalis and filum terminale of the human spinal cord.
    Choi BH; Kim RC; Suzuki M; Choe W
    Hum Pathol; 1992 Aug; 23(8):916-20. PubMed ID: 1644436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres.
    Akesson E; Piao JH; Samuelsson EB; Holmberg L; Kjaeldgaard A; Falci S; Sundström E; Seiger A
    Physiol Behav; 2007 Sep; 92(1-2):60-6. PubMed ID: 17610915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury.
    Watanabe K; Nakamura M; Iwanami A; Fujita Y; Kanemura Y; Toyama Y; Okano H
    Dev Neurosci; 2004; 26(2-4):275-87. PubMed ID: 15711067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.