These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 18652560)
1. Spatial-temporal filter effect in a computer model study of ventricular fibrillation. Nowak CN; Fischer G; Wieser L; Tilg B; Neurauter A; Strohmenger HU Biomed Tech (Berl); 2008 Aug; 53(4):163-73. PubMed ID: 18652560 [TBL] [Abstract][Full Text] [Related]
2. Mother rotors and the mechanisms of D600-induced type 2 ventricular fibrillation. Wu TJ; Lin SF; Baher A; Qu Z; Garfinkel A; Weiss JN; Ting CT; Chen PS Circulation; 2004 Oct; 110(15):2110-8. PubMed ID: 15466637 [TBL] [Abstract][Full Text] [Related]
3. Evidence for multiple mechanisms in human ventricular fibrillation. Nash MP; Mourad A; Clayton RH; Sutton PM; Bradley CP; Hayward M; Paterson DJ; Taggart P Circulation; 2006 Aug; 114(6):536-42. PubMed ID: 16880326 [TBL] [Abstract][Full Text] [Related]
4. Discovery of gradient pattern in dominant frequency maps during fibrillation: implication of rotor drift and epicardial conduction velocity changes. Joel SE; Hsia PW J Electrocardiol; 2005 Oct; 38(4 Suppl):159-65. PubMed ID: 16226093 [TBL] [Abstract][Full Text] [Related]
5. Frequency distribution effects of anchored mother rotors--a computer model study. Nowak CN; Fischer G; Wieser L; Strohmenger HU; Tilg B Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():287-90. PubMed ID: 19162649 [TBL] [Abstract][Full Text] [Related]
6. Organization of myocardial activation during ventricular fibrillation after myocardial infarction: evidence for sustained high-frequency sources. Thomas SP; Thiagalingam A; Wallace E; Kovoor P; Ross DL Circulation; 2005 Jul; 112(2):157-63. PubMed ID: 15998683 [TBL] [Abstract][Full Text] [Related]
7. Organization of ventricular fibrillation in the human heart. Ten Tusscher KH; Hren R; Panfilov AV Circ Res; 2007 Jun; 100(12):e87-101. PubMed ID: 17540975 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry. Jalife J; Berenfeld O J Theor Biol; 2004 Oct; 230(4):475-87. PubMed ID: 15363670 [TBL] [Abstract][Full Text] [Related]
10. Ventricular fibrillation during no-flow global ischemia in isolated rabbit hearts. Wu TJ; Lin SF; Hsieh YC; Ting CT; Chen PS J Cardiovasc Electrophysiol; 2006 Oct; 17(10):1112-20. PubMed ID: 16879627 [TBL] [Abstract][Full Text] [Related]
11. Possible mechanism of ECG features in patients with idiopathic ventricular fibrillation studied by heart model and computer simulation. Okazaki O; Yamauchi Y; Kashida M; Izumo K; Akatsuka N; Ohnishi S; Shoda M; Nirei T; Kasanuki H; Ebato M; Mashima S; Harumi K; Wei D J Electrocardiol; 1998; 30 Suppl():98-104. PubMed ID: 9535486 [TBL] [Abstract][Full Text] [Related]
12. Filament behavior in a computational model of ventricular fibrillation in the canine heart. Clayton RH; Holden AV IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491 [TBL] [Abstract][Full Text] [Related]
13. Vortex filament dynamics in computational models of ventricular fibrillation in the heart. Clayton RH Chaos; 2008 Dec; 18(4):043127. PubMed ID: 19123637 [TBL] [Abstract][Full Text] [Related]
14. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation. Evans FG; Gray RA J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078 [TBL] [Abstract][Full Text] [Related]
15. Canine model of Brugada syndrome using regional epicardial cooling of the right ventricular outflow tract. Nishida K; Fujiki A; Mizumaki K; Sakabe M; Sugao M; Tsuneda T; Inoue H J Cardiovasc Electrophysiol; 2004 Aug; 15(8):936-41. PubMed ID: 15333091 [TBL] [Abstract][Full Text] [Related]
16. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Samie FH; Berenfeld O; Anumonwo J; Mironov SF; Udassi S; Beaumont J; Taffet S; Pertsov AM; Jalife J Circ Res; 2001 Dec; 89(12):1216-23. PubMed ID: 11739288 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of ventricular fibrillation dominant frequency during global ischemia in isolated rabbit hearts. Caldwell J; Burton FL; Smith GL; Cobbe SM J Cardiovasc Electrophysiol; 2007 Aug; 18(8):854-61. PubMed ID: 17553077 [TBL] [Abstract][Full Text] [Related]
18. Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. Warren M; Guha PK; Berenfeld O; Zaitsev A; Anumonwo JM; Dhamoon AS; Bagwe S; Taffet SM; Jalife J J Cardiovasc Electrophysiol; 2003 Jun; 14(6):621-31. PubMed ID: 12875424 [TBL] [Abstract][Full Text] [Related]
19. Simulation of late potentials and arrhythmias by use of a three-dimensional heart model: casuality of peri-infarctional slow conduction in ventricular fibrillation. Yamaki M; Kubota I; Tomoike H J Electrocardiol; 1999 Apr; 32(2):115-21. PubMed ID: 10338030 [TBL] [Abstract][Full Text] [Related]
20. Effects of the location of myocardial infarction on the spectral characteristics of ventricular fibrillation. Sánchez-Muñoz JJ; Rojo-Alvarez JL; García-Alberola A; Everss E; Requena-Carrión J; Ortiz M; Alonso-Atienza F; Valdés-Chavarri M Pacing Clin Electrophysiol; 2008 Jun; 31(6):660-5. PubMed ID: 18507537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]