BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1070 related articles for article (PubMed ID: 18652815)

  • 41. Transcriptional repression by the basic helix-loop-helix protein Dec2: multiple mechanisms through E-box elements.
    Fujimoto K; Hamaguchi H; Hashiba T; Nakamura T; Kawamoto T; Sato F; Noshiro M; Bhawal UK; Suardita K; Kato Y
    Int J Mol Med; 2007 Jun; 19(6):925-32. PubMed ID: 17487425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear.
    Qian D; Radde-Gallwitz K; Kelly M; Tyrberg B; Kim J; Gao WQ; Chen P
    Dev Dyn; 2006 Jun; 235(6):1689-700. PubMed ID: 16534784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calbindin and S100 protein expression in the developing inner ear in mice.
    Buckiová D; Syka J
    J Comp Neurol; 2009 Apr; 513(5):469-82. PubMed ID: 19226521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA hypomethylation.
    Figliola R; Busanello A; Vaccarello G; Maione R
    J Mol Biol; 2008 Jul; 380(2):265-77. PubMed ID: 18513743
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular retinol-binding protein type I is prominently and differentially expressed in the sensory epithelium of the rat cochlea and vestibular organs.
    Ylikoski J; Pirvola U; Eriksson U
    J Comp Neurol; 1994 Nov; 349(4):596-602. PubMed ID: 7860790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells.
    Liu Q; Chen P; Wang J
    Dev Biol; 2014 Jun; 390(2):93-101. PubMed ID: 24680894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hes1 is a negative regulator of inner ear hair cell differentiation.
    Zheng JL; Shou J; Guillemot F; Kageyama R; Gao WQ
    Development; 2000 Nov; 127(21):4551-60. PubMed ID: 11023859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells.
    Hughes M; Dobric N; Scott IC; Su L; Starovic M; St-Pierre B; Egan SE; Kingdom JC; Cross JC
    Dev Biol; 2004 Jul; 271(1):26-37. PubMed ID: 15196947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strategies to regenerate hair cells: identification of progenitors and critical genes.
    Breuskin I; Bodson M; Thelen N; Thiry M; Nguyen L; Belachew S; Lefebvre PP; Malgrange B
    Hear Res; 2008 Feb; 236(1-2):1-10. PubMed ID: 17920797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea.
    Jahan I; Pan N; Kersigo J; Fritzsch B
    PLoS One; 2010 Jul; 5(7):e11661. PubMed ID: 20661473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of supporting cell phenotype in the avian inner ear: implications for sensory regeneration.
    Warchol ME
    Hear Res; 2007 May; 227(1-2):11-8. PubMed ID: 17081713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea.
    Chen Y; Gu Y; Li Y; Li GL; Chai R; Li W; Li H
    Cell Rep; 2021 Apr; 35(3):109016. PubMed ID: 33882317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears.
    Fritzsch B; Signore M; Simeone A
    Dev Genes Evol; 2001 Sep; 211(8-9):388-96. PubMed ID: 11685572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prox1 activity controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells.
    Wang J; Kilic G; Aydin M; Burke Z; Oliver G; Sosa-Pineda B
    Dev Biol; 2005 Oct; 286(1):182-94. PubMed ID: 16122728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Establishment of a proneural field in the inner ear.
    Abello G; Alsina B
    Int J Dev Biol; 2007; 51(6-7):483-93. PubMed ID: 17891711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear.
    Li H; Liu H; Corrales CE; Mutai H; Heller S
    J Neurobiol; 2004 Jul; 60(1):61-70. PubMed ID: 15188273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prox1 function is crucial for mouse lens-fibre elongation.
    Wigle JT; Chowdhury K; Gruss P; Oliver G
    Nat Genet; 1999 Mar; 21(3):318-22. PubMed ID: 10080188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hair and supporting-cell differentiation during the development of the avian inner ear.
    Goodyear R; Holley M; Richardson G
    J Comp Neurol; 1995 Jan; 351(1):81-93. PubMed ID: 7896941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gfi1 negatively regulates T(h)17 differentiation by inhibiting RORgammat activity.
    Ichiyama K; Hashimoto M; Sekiya T; Nakagawa R; Wakabayashi Y; Sugiyama Y; Komai K; Saba I; Möröy T; Yoshimura A
    Int Immunol; 2009 Jul; 21(7):881-9. PubMed ID: 19505891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.