These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1865330)

  • 1. Easy and practical utilization of CONSAM for simulation, analysis, and optimization of complex dosing regimens.
    Jackson AJ; Zech LA
    J Pharm Sci; 1991 Apr; 80(4):317-20. PubMed ID: 1865330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient pharmacokinetic modeling of complex clinical dosing regimens: the universal elementary dosing regimen and computer algorithm EDFAST.
    Sebaldt RJ; Kreeft JH
    J Pharm Sci; 1987 Feb; 76(2):93-100. PubMed ID: 3572761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abbott PKS system: a new version for applied pharmacokinetics including Bayesian estimation.
    Lacarelle B; Pisano P; Gauthier T; Villard PH; Guder F; Catalin J; Durand A
    Int J Biomed Comput; 1994 Jun; 36(1-2):127-30. PubMed ID: 7927851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled-release hydrophilic tablets for individualized theophylline therapy.
    Sabnis S; Adeyeye CM
    Drug Dev Ind Pharm; 1999 Feb; 25(2):187-96. PubMed ID: 10065352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state pharmacokinetics of two sustained-release theophylline products during once-daily and twice-daily dosing.
    Armstrong EP; Nako N; Plezia PM; Kramer TH; Jones WN
    Clin Pharm; 1987 Oct; 6(10):800-4. PubMed ID: 3505842
    [No Abstract]   [Full Text] [Related]  

  • 6. PEDA: a microcomputer program for parameter estimation and dosage adjustment in clinical practice.
    Higuchi S; Aoyama T; Horioka M
    J Pharmacobiodyn; 1987 Dec; 10(12):703-18. PubMed ID: 3132550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics of a new sustained-release formulation of theophylline sodium glycerinate in healthy subjects with a new asymmetric dosage regimen.
    Wang P; Qi M; Zhong D; Fang L
    Biomed Chromatogr; 2003 Jan; 17(1):58-61. PubMed ID: 12583008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.
    Knights J; Rohatagi S
    J Pharmacokinet Pharmacodyn; 2015 Dec; 42(6):627-37. PubMed ID: 26209956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving drug dosing in hospitalized patients: automated modeling of pharmacokinetics for individualization of drug dosage regimens.
    Lenert L; Sheiner L; Blaschke T
    Comput Methods Programs Biomed; 1989; 30(2-3):169-76. PubMed ID: 2582750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of theophylline dosage regimens from limited serum sampling.
    Robinson JD; Boysen PG; Lupkiewicz SM; Krischer JP; Ariet M
    Drug Intell Clin Pharm; 1982 Oct; 16(10):752-8. PubMed ID: 6897223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of dosing time on the pharmacokinetics and pharmacodynamics of a 'once-a-day' sustained release theophylline preparation.
    Lamont H; Pauwels R; Van der Straeten M
    Br J Clin Pharmacol; 1987 Dec; 24(6):735-42. PubMed ID: 3440095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic estimation for therapeutic dosage regimens (PETDR)--a software program designed to determine intravenous drug dosage regimens for veterinary applications.
    Riviere JE; Frazier DL; Tippitt WL
    J Vet Pharmacol Ther; 1988 Dec; 11(4):390-6. PubMed ID: 3210265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of dosage regimens: a multiple model stochastic control approach.
    Bayard DS; Milman MH; Schumitzky A
    Int J Biomed Comput; 1994 Jun; 36(1-2):103-15. PubMed ID: 7927848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of intravenous and subcutaneous exposure supporting dose selection of subcutaneous belimumab systemic lupus erythematosus Phase 3 program.
    Yapa SW; Roth D; Gordon D; Struemper H
    Lupus; 2016 Nov; 25(13):1448-1455. PubMed ID: 27072354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open-loop stochastic control of pharmacokinetic systems: a new method for design of dosing regimens.
    Lago PJ
    Comput Biomed Res; 1992 Feb; 25(1):85-100. PubMed ID: 1547629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The method of relative drug accumulation: a simple method for illustrating the effects of different drug dosing regimens and variability in drug elimination on time courses of drug concentrations.
    Bjornsson TD
    Clin Pharmacol Ther; 1992 Mar; 51(3):266-70. PubMed ID: 1544286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian variation in theophylline absorption during chronic dosing with a slow release theophylline preparation and the effect of clock time of dosing.
    Jackson SH; Johnston A; Woollard R; Abrams SM; Turner P
    Br J Clin Pharmacol; 1988 Jul; 26(1):73-7. PubMed ID: 3203064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-dose comparison of three slow-release theophylline oral preparations in healthy Thai volunteers.
    Kanthawatana S; Tontayapiwat A; Tonsuwannont W; Manorot M
    Asian Pac J Allergy Immunol; 1996 Jun; 14(1):13-8. PubMed ID: 8980795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculator programs to deal with non-steady state, multiple dosage regimen clinical pharmacokinetics.
    Ensom RJ; Nakagawa RS
    Int J Biomed Comput; 1983 Jul; 14(4):287-309. PubMed ID: 6688607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Once-daily dosing of a new ultrasustained-release theophylline preparation.
    Van den Brande P; Nys J; Tjandramaga TB; Verhelst F; Demedts M
    Respiration; 1987; 52(2):144-53. PubMed ID: 3671893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.