BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18653456)

  • 1. Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host.
    Gallei A; Blome S; Gilgenbach S; Tautz N; Moennig V; Becher P
    J Virol; 2008 Oct; 82(19):9717-29. PubMed ID: 18653456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus.
    Guo K; Li H; Tan X; Wu M; Lv Q; Liu W; Zhang Y
    Virus Genes; 2017 Jun; 53(3):426-433. PubMed ID: 28341934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus.
    Reimann I; Depner K; Trapp S; Beer M
    Virology; 2004 Apr; 322(1):143-57. PubMed ID: 15063124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a Cytopathogenic Reporter CSFV.
    Reuscher CM; Schmidt L; Netsch A; Lamp B
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34201706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of helper virus-independent cytopathogenic classical swine fever virus generated by an in vivo RNA recombination system.
    Gallei A; Rümenapf T; Thiel HJ; Becher P
    J Virol; 2005 Feb; 79(4):2440-8. PubMed ID: 15681445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Critical Requirements for Classical Swine Fever Virus NS2-3-Independent Virion Formation.
    Dubrau D; Schwindt S; Klemens O; Bischoff H; Tautz N
    J Virol; 2019 Sep; 93(18):. PubMed ID: 31292243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Mediated Knockout of DNAJC14 Verifies This Chaperone as a Pivotal Host Factor for RNA Replication of Pestiviruses.
    Isken O; Postel A; Bruhn B; Lattwein E; Becher P; Tautz N
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30518653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetic basis for cytopathogenicity of pestiviruses.
    Kümmerer BM; Tautz N; Becher P; Thiel H; Meyers G
    Vet Microbiol; 2000 Nov; 77(1-2):117-28. PubMed ID: 11042405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P108 and T109 on E2 Glycoprotein Domain I Are Critical for the Adaptation of Classical Swine Fever Virus to Rabbits but Not for Virulence in Pigs.
    Xie L; Han Y; Ma Y; Yuan M; Li W; Li LF; Li M; Sun Y; Luo Y; Li S; Hu S; Li Y; Qiu HJ
    J Virol; 2020 Aug; 94(17):. PubMed ID: 32581110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of reverse transcriptase-polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus.
    Handel K; Kehler H; Hills K; Pasick J
    J Vet Diagn Invest; 2004 Mar; 16(2):132-8. PubMed ID: 15053364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine Complement Regulatory Protein CD46 Is a Major Receptor for Atypical Porcine Pestivirus but Not for Classical Swine Fever Virus.
    Cagatay GN; Antos A; Suckstorff O; Isken O; Tautz N; Becher P; Postel A
    J Virol; 2021 Apr; 95(9):. PubMed ID: 33568504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors.
    Hulst MM; Moormann RJ
    J Gen Virol; 1997 Nov; 78 ( Pt 11)():2779-87. PubMed ID: 9367363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system.
    Gladue DP; Baker-Bransetter R; Holinka LG; Fernandez-Sainz IJ; O'Donnell V; Fletcher P; Lu Z; Borca MV
    PLoS One; 2014; 9(1):e85324. PubMed ID: 24416391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar.
    Aoki H; Ishikawa K; Sakoda Y; Sekiguchi H; Kodama M; Suzuki S; Fukusho A
    J Vet Med Sci; 2001 Jul; 63(7):751-8. PubMed ID: 11503902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of classical swine fever virus nonstructural proteins.
    Lamp B; Riedel C; Roman-Sosa G; Heimann M; Jacobi S; Becher P; Thiel HJ; Rümenapf T
    J Virol; 2011 Apr; 85(7):3607-20. PubMed ID: 21270154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect.
    Mittelholzer C; Moser C; Tratschin JD; Hofmann MA
    J Gen Virol; 1998 Dec; 79 ( Pt 12)():2981-7. PubMed ID: 9880012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically distinct pestiviruses pave the way to improved classical swine fever marker vaccine candidates based on the chimeric pestivirus concept.
    Postel A; Becher P
    Emerg Microbes Infect; 2020 Dec; 9(1):2180-2189. PubMed ID: 32962557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus.
    Lackner T; Müller A; Pankraz A; Becher P; Thiel HJ; Gorbalenya AE; Tautz N
    J Virol; 2004 Oct; 78(19):10765-75. PubMed ID: 15367643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus.
    Moser C; Stettler P; Tratschin JD; Hofmann MA
    J Virol; 1999 Sep; 73(9):7787-94. PubMed ID: 10438869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum.
    Lin M; Lin F; Mallory M; Clavijo A
    J Virol; 2000 Dec; 74(24):11619-25. PubMed ID: 11090160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.