These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18653694)

  • 1. Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide.
    Guo K; Xia K; Yang ZM
    J Exp Bot; 2008; 59(12):3443-52. PubMed ID: 18653694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon monoxide promotes root hair development in tomato.
    Guo K; Kong WW; Yang ZM
    Plant Cell Environ; 2009 Aug; 32(8):1033-45. PubMed ID: 19344331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1.
    Li J; Zhu D; Wang R; Shen W; Guo Y; Ren Y; Shen W; Huang L
    Plant Cell Rep; 2015 Mar; 34(3):381-93. PubMed ID: 25433859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner.
    Lin Y; Zhang W; Qi F; Cui W; Xie Y; Shen W
    J Plant Physiol; 2014 Jan; 171(2):1-8. PubMed ID: 24331413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide plays a central role in determining lateral root development in tomato.
    Correa-Aragunde N; Graziano M; Lamattina L
    Planta; 2004 Apr; 218(6):900-5. PubMed ID: 14716561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme oxygenase-1 is involved in sodium hydrosulfide-induced lateral root formation in tomato seedlings.
    Fang T; Li J; Cao Z; Chen M; Shen W; Huang L
    Plant Cell Rep; 2014 Jun; 33(6):969-78. PubMed ID: 24556961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants.
    Jin CW; Du ST; Shamsi IH; Luo BF; Lin XY
    J Exp Bot; 2011 Jul; 62(11):3875-84. PubMed ID: 21511908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis.
    Cao Z; Duan X; Yao P; Cui W; Cheng D; Zhang J; Jin Q; Chen J; Dai T; Shen W
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28972563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato.
    Correa-Aragunde N; Graziano M; Chevalier C; Lamattina L
    J Exp Bot; 2006; 57(3):581-8. PubMed ID: 16410257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence.
    Ren Z; Liu R; Gu W; Dong X
    Plant Sci; 2017 Mar; 256():103-111. PubMed ID: 28167023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato.
    Negi S; Sukumar P; Liu X; Cohen JD; Muday GK
    Plant J; 2010 Jan; 61(1):3-15. PubMed ID: 19793078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation.
    Cao Z; Geng B; Xu S; Xuan W; Nie L; Shen W; Liang Y; Guan R
    J Exp Bot; 2011 Aug; 62(13):4675-89. PubMed ID: 21673093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin regulates adventitious root formation in tomato cuttings.
    Guan L; Tayengwa R; Cheng ZM; Peer WA; Murphy AS; Zhao M
    BMC Plant Biol; 2019 Oct; 19(1):435. PubMed ID: 31638898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profiling of cytokinin and auxin regulation in tomato root.
    Gupta S; Shi X; Lindquist IE; Devitt N; Mudge J; Rashotte AM
    J Exp Bot; 2013 Jan; 64(2):695-704. PubMed ID: 23307920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of glutathione in β-cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings.
    Zhu D; Mei Y; Shi Y; Hu D; Ren Y; Gu Q; Shen W; Chen X; Xu L; Huang L
    J Plant Physiol; 2016 Oct; 204():92-100. PubMed ID: 27543888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process.
    Xuan W; Zhu FY; Xu S; Huang BK; Ling TF; Qi JY; Ye MB; Shen WB
    Plant Physiol; 2008 Oct; 148(2):881-93. PubMed ID: 18689445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport.
    Li A; Chen G; Yu X; Zhu Z; Zhang L; Zhou S; Hu Z
    Plant Cell Rep; 2019 Aug; 38(8):951-963. PubMed ID: 31062133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development.
    de Jong M; Wolters-Arts M; Schimmel BC; Stultiens CL; de Groot PF; Powers SJ; Tikunov YM; Bovy AG; Mariani C; Vriezen WH; Rieu I
    J Exp Bot; 2015 Jun; 66(11):3405-16. PubMed ID: 25883382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide.
    Chen J; Zhang HQ; Hu LB; Shi ZQ
    Chemosphere; 2013 Sep; 93(2):283-93. PubMed ID: 23726011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormonal interplay during adventitious root formation in flooded tomato plants.
    Vidoz ML; Loreti E; Mensuali A; Alpi A; Perata P
    Plant J; 2010 Aug; 63(4):551-62. PubMed ID: 20497380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.