These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18653749)

  • 1. Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure.
    Kim SJ; Roy RR; Kim JA; Zhong H; Haddad F; Baldwin KM; Edgerton VR
    J Appl Physiol (1985); 2008 Oct; 105(4):1246-54. PubMed ID: 18653749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical stimulation ameliorates inactivity-induced adaptations in the medial gastrocnemius of adult rats.
    Kim SJ; Roy RR; Zhong H; Suzuki H; Ambartsumyan L; Haddad F; Baldwin KM; Edgerton VR
    J Appl Physiol (1985); 2007 Jul; 103(1):195-205. PubMed ID: 17431083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading.
    Haddad F; Adams GR; Bodell PW; Baldwin KM
    J Appl Physiol (1985); 2006 Feb; 100(2):433-41. PubMed ID: 16239603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats.
    Adams GR; Haddad F; Bodell PW; Tran PD; Baldwin KM
    J Appl Physiol (1985); 2007 Nov; 103(5):1644-54. PubMed ID: 17872405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanical modulation of catabolic and anabolic pathways in chronically inactive, but neurally intact, muscles.
    Kim JA; Roy RR; Kim SJ; Zhong H; Haddad F; Baldwin KM; Edgerton VR
    Muscle Nerve; 2010 Sep; 42(3):410-21. PubMed ID: 20658566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of daily eccentric contractions induced via kilohertz frequency transcutaneous electrical stimulation on muscle atrophy.
    Tanaka M; Nakanishi R; Murakami S; Fujita N; Kondo H; Ishihara A; Roy RR; Fujino H
    Acta Histochem; 2016 Jan; 118(1):56-62. PubMed ID: 26627335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits.
    Haddad F; Roy RR; Zhong H; Edgerton VR; Baldwin KM
    J Appl Physiol (1985); 2003 Aug; 95(2):781-90. PubMed ID: 12716870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.
    Marzuca-Nassr GN; Murata GM; Martins AR; Vitzel KF; Crisma AR; Torres RP; Mancini-Filho J; Kang JX; Curi R
    Nutrients; 2017 Oct; 9(10):. PubMed ID: 28984836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3.
    López-Menduiña M; Martín AI; Castillero E; Villanúa MA; López-Calderón A
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R541-51. PubMed ID: 20519361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of electromechanical events in defining skeletal muscle properties.
    Roy RR; Zhong H; Hodgson JA; Grossman EJ; Siengthai B; Talmadge RJ; Edgerton VR
    Muscle Nerve; 2002 Aug; 26(2):238-51. PubMed ID: 12210389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of isometric contraction training by electrostimulation on Type I and II hindlimb muscles in cerebral ischemia model rats].
    Lee YK; Choe MA; An GJ
    Taehan Kanho Hakhoe Chi; 2006 Dec; 36(7):1232-41. PubMed ID: 17211126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindlimb unloading-induced muscle atrophy and loss of function: protective effect of isometric exercise.
    Hurst JE; Fitts RH
    J Appl Physiol (1985); 2003 Oct; 95(4):1405-17. PubMed ID: 12819219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats.
    Liu M; Stevens-Lapsley JE; Jayaraman A; Ye F; Conover C; Walter GA; Bose P; Thompson FJ; Borst SE; Vandenborne K
    Eur J Appl Physiol; 2010 Jul; 109(4):709-20. PubMed ID: 20213470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrophy responses to muscle inactivity. II. Molecular markers of protein deficits.
    Haddad F; Roy RR; Zhong H; Edgerton VR; Baldwin KM
    J Appl Physiol (1985); 2003 Aug; 95(2):791-802. PubMed ID: 12716877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated bouts of fast velocity eccentric contractions induce atrophy of gastrocnemius muscle in rats.
    Ochi E; Nosaka K; Tsutaki A; Kouzaki K; Nakazato K
    J Muscle Res Cell Motil; 2015 Oct; 36(4-5):317-27. PubMed ID: 26476829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of mild therapeutic exercise during a period of inactivity on power generation in soleus type I single fibers with age.
    Kim JH; Thompson LV
    J Appl Physiol (1985); 2012 May; 112(10):1752-61. PubMed ID: 22422796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The combined effect of electrical stimulation and high-load isometric contraction on protein degradation pathways in muscle atrophy induced by hindlimb unloading.
    Fujita N; Murakami S; Fujino H
    J Biomed Biotechnol; 2011; 2011():401493. PubMed ID: 22007142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
    Maki T; Yamamoto D; Nakanishi S; Iida K; Iguchi G; Takahashi Y; Kaji H; Chihara K; Okimura Y
    Nutr Res; 2012 Sep; 32(9):676-83. PubMed ID: 23084640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inactivity and undernutrition after acute ischemic stroke in a rat hindlimb muscle model.
    Choe MA; An GJ; Lee YK; Im JH; Choi-Kwon S; Heitkemper M
    Nurs Res; 2004; 53(5):283-92. PubMed ID: 15385863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivity-induced modulation of Hsp20 and Hsp25 content in rat hindlimb muscles.
    Huey KA; Thresher JS; Brophy CM; Roy RR
    Muscle Nerve; 2004 Jul; 30(1):95-101. PubMed ID: 15221884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.