These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 18653942)

  • 21. Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater.
    Chowdhury N; Nakhla G; Zhu J
    Chemosphere; 2008 Mar; 71(5):807-15. PubMed ID: 18262217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment.
    Gutzeit G; Lorch D; Weber A; Engels M; Neis U
    Water Sci Technol; 2005; 52(12):9-18. PubMed ID: 16477966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of organic shock loads in an ASBBR treating synthetic wastewater with different concentration levels.
    Moreira MB; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E
    Bioresour Technol; 2008 May; 99(8):3256-66. PubMed ID: 17669646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-step biological process for the treatment of the liquid fraction of cattle manure.
    Marañón E; Castrillón L; García L; Vázquez I; Fernández-Nava Y
    Bioresour Technol; 2008 Nov; 99(16):7750-7. PubMed ID: 18394883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry.
    Molinuevo-Salces B; García-González MC; González-Fernández C
    Bioresour Technol; 2010 Jul; 101(14):5144-9. PubMed ID: 20206512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zero Nuisance Piggeries: long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale.
    Prado N; Ochoa J; Amrane A
    Water Res; 2009 Apr; 43(6):1549-58. PubMed ID: 19136138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of soluble COD by a biofilm formed on a membrane in a jet loop type membrane bioreactor.
    Park JS; Lee CH
    Water Res; 2005 Nov; 39(19):4609-22. PubMed ID: 16243377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater.
    Mohan SV; Lalit Babu V; Vijaya Bhaskar Y; Sarma PN
    Bioresour Technol; 2007 May; 98(7):1373-9. PubMed ID: 16824749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particulate-biofilm, expanded-bed technology for high-rate, low-cost wastewater treatment: nitrification.
    Dempsey MJ; Lannigan KC; Minall RJ
    Water Res; 2005 Mar; 39(6):965-74. PubMed ID: 15766951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of phosphorus from livestock effluents.
    Szogi AA; Vanotti MB
    J Environ Qual; 2009; 38(2):576-86. PubMed ID: 19202028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrification in brackish water recirculating aquaculture system integrated with activated packed bed bioreactor.
    Rejish Kumar VJ; Joseph V; Philip R; Bright Singh IS
    Water Sci Technol; 2010; 61(3):797-805. PubMed ID: 20150717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters.
    González C; Marciniak J; Villaverde S; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):891-8. PubMed ID: 18716772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support.
    Rajasimman M; Karthikeyan C
    J Hazard Mater; 2007 May; 143(1-2):82-6. PubMed ID: 17030411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters.
    de Godos I; Blanco S; García-Encina PA; Becares E; Muñoz R
    J Hazard Mater; 2010 Jul; 179(1-3):1049-54. PubMed ID: 20434262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.
    Malmqvist A; Berggren B; Sjölin C; Welander T; Heuts L; Fransén A; Ling D
    Water Sci Technol; 2004; 50(3):123-30. PubMed ID: 15461406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Algal-bacterial processes for the treatment of hazardous contaminants: a review.
    Muñoz R; Guieysse B
    Water Res; 2006 Aug; 40(15):2799-815. PubMed ID: 16889814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater.
    Celmer D; Oleszkiewicz JA; Cicek N
    Water Res; 2008 Jun; 42(12):3057-65. PubMed ID: 18396310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous removal of organic matter and nitrogen compounds by an aerobic/anoxic membrane biofilm reactor.
    Hasar H; Xia S; Ahn CH; Rittmann BE
    Water Res; 2008 Sep; 42(15):4109-16. PubMed ID: 18684483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen and phosphorus removal from domestic strength synthetic wastewater using an alternating pumped flow sequencing batch biofilm reactor.
    Rodgers M; Wu G; Zhan X
    J Environ Qual; 2008; 37(3):977-82. PubMed ID: 18453421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of limited aeration on swine manure phosphorus removal.
    Zhu J; Luo A; Ndegwa PM
    J Environ Sci Health B; 2001 Mar; 36(2):209-18. PubMed ID: 11409499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.