These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18653962)

  • 1. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.
    Shilton AN; Mara DD; Craggs R; Powell N
    Water Sci Technol; 2008; 58(1):253-8. PubMed ID: 18653962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse gas production in wastewater treatment: process selection is the major factor.
    Keller J; Hartley K
    Water Sci Technol; 2003; 47(12):43-8. PubMed ID: 12926668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined photosynthesis and mechanical aeration for nitrification in dairy waste stabilisation ponds.
    Sukias JP; Craggs RJ; Tanner CC; Davies-Colley RJ; Nagels JW
    Water Sci Technol; 2003; 48(2):137-44. PubMed ID: 14510204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algal biofuels from wastewater treatment high rate algal ponds.
    Craggs RJ; Heubeck S; Lundquist TJ; Benemann JR
    Water Sci Technol; 2011; 63(4):660-5. PubMed ID: 21330711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dairy farm wastewater treatment by an advanced pond system.
    Craggs RJ; Tanner CC; Sukias JP; Davies-Colley RJ
    Water Sci Technol; 2003; 48(2):291-7. PubMed ID: 14510223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revival of the biological sunlight-to-biogas energy conversion system.
    De Schamphelaire L; Verstraete W
    Biotechnol Bioeng; 2009 Jun; 103(2):296-304. PubMed ID: 19180645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants.
    Bani Shahabadi M; Yerushalmi L; Haghighat F
    Water Res; 2009 Jun; 43(10):2679-87. PubMed ID: 19375775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable energy for the aeration of wastewater ponds.
    Hobus I; Hegemann W
    Water Sci Technol; 2003; 48(2):365-72. PubMed ID: 14510232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.
    Park JB; Craggs RJ
    Water Sci Technol; 2010; 61(3):633-9. PubMed ID: 20150699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy- and CO2-reduction potentials by anaerobic treatment of wastewater and organic kitchen wastes in consideration of different climatic conditions.
    Weichgrebe D; Urban I; Friedrich K
    Water Sci Technol; 2008; 58(2):379-84. PubMed ID: 18701789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple intervention to reduce mosquito breeding in waste stabilisation ponds.
    Ensink JH; Mukhtar M; van der Hoek W; Konradsen F
    Trans R Soc Trop Med Hyg; 2007 Nov; 101(11):1143-6. PubMed ID: 17825333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic treatment of municipal wastewater using the UASB-technology.
    Urban I; Weichgrebe D; Rosenwinkel KH
    Water Sci Technol; 2007; 56(10):37-44. PubMed ID: 18048975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disinfection in a pilot-scale "advanced" pond system (APS) for domestic sewage treatment in New Zealand.
    Davies-Colley RJ; Craggs RJ; Nagels JW
    Water Sci Technol; 2003; 48(2):81-7. PubMed ID: 14510197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.
    Sweeney DG; O'Brien MJ; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):17-22. PubMed ID: 16114659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waste stabilisation ponds upgrading at Blenheim and Seddon, New Zealand--case studies.
    Archer HE; Donaldson SA
    Water Sci Technol; 2003; 48(2):17-23. PubMed ID: 14510189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology.
    Cakir FY; Stenstrom MK
    Water Res; 2005 Oct; 39(17):4197-203. PubMed ID: 16188289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twenty years' monitoring of Mèze stabilisation ponds: part II--Removal of faecal indicators.
    Brissaud F; Andrianarison T; Brouillet JL; Picot B
    Water Sci Technol; 2005; 51(12):33-41. PubMed ID: 16114661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential biogas scrubbing using a high rate pond.
    Mandeno G; Craggs R; Tanner C; Sukias J; Webster-Brown J
    Water Sci Technol; 2005; 51(12):253-6. PubMed ID: 16114691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.