These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18654139)

  • 1. Torsional electromechanical quantum oscillations in carbon nanotubes.
    Cohen-Karni T; Segev L; Srur-Lavi O; Cohen SR; Joselevich E
    Nat Nanotechnol; 2006 Oct; 1(1):36-41. PubMed ID: 18654139
    [No Abstract]   [Full Text] [Related]  

  • 2. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotubes: the logical choice for electronics?
    Xu H
    Nat Mater; 2005 Sep; 4(9):649-50. PubMed ID: 16136154
    [No Abstract]   [Full Text] [Related]  

  • 4. Materials processing: sorting out carbon nanotube electronics.
    Rinzler AG
    Nat Nanotechnol; 2006 Oct; 1(1):17-8. PubMed ID: 18654133
    [No Abstract]   [Full Text] [Related]  

  • 5. NEMS: All you need is feedback.
    Ekinci KL
    Nat Nanotechnol; 2008 Jun; 3(6):319-20. PubMed ID: 18654535
    [No Abstract]   [Full Text] [Related]  

  • 6. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube electronics: a flexible approach to mobility.
    Hong S; Myung S
    Nat Nanotechnol; 2007 Apr; 2(4):207-8. PubMed ID: 18654263
    [No Abstract]   [Full Text] [Related]  

  • 8. Flexible electronics: stretching our imagination.
    LeMieux MC; Bao Z
    Nat Nanotechnol; 2008 Oct; 3(10):585-6. PubMed ID: 18838993
    [No Abstract]   [Full Text] [Related]  

  • 9. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-based electronics.
    Avouris P; Chen Z; Perebeinos V
    Nat Nanotechnol; 2007 Oct; 2(10):605-15. PubMed ID: 18654384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics.
    Romo-Herrera JM; Terrones M; Terrones H; Meunier V
    ACS Nano; 2008 Dec; 2(12):2585-91. PubMed ID: 19206295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled buckling of semiconductor nanoribbons for stretchable electronics.
    Sun Y; Choi WM; Jiang H; Huang YY; Rogers JA
    Nat Nanotechnol; 2006 Dec; 1(3):201-7. PubMed ID: 18654187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing nanogadgets by interconnecting carbon nanotubes with zinc layers.
    Khazaei M; Lee SU; Pichierri F; Kawazoe Y
    ACS Nano; 2008 May; 2(5):939-43. PubMed ID: 19206491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.
    Peng B; Locascio M; Zapol P; Li S; Mielke SL; Schatz GC; Espinosa HD
    Nat Nanotechnol; 2008 Oct; 3(10):626-31. PubMed ID: 18839003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates.
    Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C
    ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.
    Feng XL; White CJ; Hajimiri A; Roukes ML
    Nat Nanotechnol; 2008 Jun; 3(6):342-6. PubMed ID: 18654544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting electronics: the nanoSQUID makes its debut.
    Aprili M
    Nat Nanotechnol; 2006 Oct; 1(1):15-6. PubMed ID: 18654132
    [No Abstract]   [Full Text] [Related]  

  • 20. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.