BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 18654324)

  • 1. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors.
    Kim YJ; Kim YA; Chino T; Suezaki H; Endo M; Dresselhaus MS
    Small; 2006 Mar; 2(3):339-45. PubMed ID: 17193046
    [No Abstract]   [Full Text] [Related]  

  • 4. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions.
    Bandaru PR; Daraio C; Jin S; Rao AM
    Nat Mater; 2005 Sep; 4(9):663-6. PubMed ID: 16100516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoindentation-induced disappearance of a room-temperature coulomb blockade in single-walled carbon nanotubes.
    Wang H; Mao SX
    Small; 2006 Jan; 2(1):59-61. PubMed ID: 17193554
    [No Abstract]   [Full Text] [Related]  

  • 6. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.
    Siqueira JR; Abouzar MH; Poghossian A; Zucolotto V; Oliveira ON; Schöning MJ
    Biosens Bioelectron; 2009 Oct; 25(2):497-501. PubMed ID: 19651505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically driven thermal light emission from individual single-walled carbon nanotubes.
    Mann D; Kato YK; Kinkhabwala A; Pop E; Cao J; Wang X; Zhang L; Wang Q; Guo J; Dai H
    Nat Nanotechnol; 2007 Jan; 2(1):33-8. PubMed ID: 18654204
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional brushes made from carbon nanotubes.
    Cao A; Veedu VP; Li X; Yao Z; Ghasemi-Nejhad MN; Ajayan PM
    Nat Mater; 2005 Jul; 4(7):540-5. PubMed ID: 15951816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoresonant signal boosters for carbon nanotube based infrared detectors.
    Fung CK; Xi N; Shanker B; Lai KW
    Nanotechnology; 2009 May; 20(18):185201. PubMed ID: 19420605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube.
    Song X; Han X; Fu Q; Xu J; Wang N; Yu DP
    Nanotechnology; 2009 May; 20(19):195202. PubMed ID: 19420633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes.
    Mureau N; Mendoza E; Silva SR
    Electrophoresis; 2007 May; 28(10):1495-8. PubMed ID: 17427259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.
    Gómez-Navarro C; de Pablo PJ; Gómez-Herrero J; Biel B; Garcia-Vidal FJ; Rubio A; Flores F
    Nat Mater; 2005 Jul; 4(7):534-9. PubMed ID: 15965479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths.
    Xia F; Steiner M; Lin YM; Avouris P
    Nat Nanotechnol; 2008 Oct; 3(10):609-13. PubMed ID: 18839000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-walled carbon nanotube-aluminum bimorph nanoactuator.
    Sul O; Yang EH
    Nanotechnology; 2009 Mar; 20(9):095502. PubMed ID: 19417489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.