These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Becerril HA; Mao J; Liu Z; Stoltenberg RM; Bao Z; Chen Y ACS Nano; 2008 Mar; 2(3):463-70. PubMed ID: 19206571 [TBL] [Abstract][Full Text] [Related]
5. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Reina A; Jia X; Ho J; Nezich D; Son H; Bulovic V; Dresselhaus MS; Kong J Nano Lett; 2009 Jan; 9(1):30-5. PubMed ID: 19046078 [TBL] [Abstract][Full Text] [Related]
6. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Bae S; Kim H; Lee Y; Xu X; Park JS; Zheng Y; Balakrishnan J; Lei T; Kim HR; Song YI; Kim YJ; Kim KS; Ozyilmaz B; Ahn JH; Hong BH; Iijima S Nat Nanotechnol; 2010 Aug; 5(8):574-8. PubMed ID: 20562870 [TBL] [Abstract][Full Text] [Related]
7. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Liu J; Buchholz DB; Chang RP; Facchetti A; Marks TJ Adv Mater; 2010 Jun; 22(21):2333-7. PubMed ID: 20491089 [No Abstract] [Full Text] [Related]
8. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. Aristov VY; Urbanik G; Kummer K; Vyalikh DV; Molodtsova OV; Preobrajenski AB; Zakharov AA; Hess C; Hänke T; Büchner B; Vobornik I; Fujii J; Panaccione G; Ossipyan YA; Knupfer M Nano Lett; 2010 Mar; 10(3):992-5. PubMed ID: 20141155 [TBL] [Abstract][Full Text] [Related]
9. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268 [TBL] [Abstract][Full Text] [Related]
10. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Li X; Zhu Y; Cai W; Borysiak M; Han B; Chen D; Piner RD; Colombo L; Ruoff RS Nano Lett; 2009 Dec; 9(12):4359-63. PubMed ID: 19845330 [TBL] [Abstract][Full Text] [Related]
11. Graphene nanoribbon thin films using layer-by-layer assembly. Zhu Y; Tour JM Nano Lett; 2010 Nov; 10(11):4356-62. PubMed ID: 20949936 [TBL] [Abstract][Full Text] [Related]
12. Programmable direct-printing nanowire electronic components. Lee TI; Choi WJ; Moon KJ; Choi JH; Kar JP; Das SN; Kim YS; Baik HK; Myoung JM Nano Lett; 2010 Mar; 10(3):1016-21. PubMed ID: 20108927 [TBL] [Abstract][Full Text] [Related]
13. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Park WI; Yoon JM; Park M; Lee J; Kim SK; Jeong JW; Kim K; Jeong HY; Jeon S; No KS; Lee JY; Jung YS Nano Lett; 2012 Mar; 12(3):1235-40. PubMed ID: 22324809 [TBL] [Abstract][Full Text] [Related]
15. Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Kang Z; Liu Y; Lee ST Nanoscale; 2011 Mar; 3(3):777-91. PubMed ID: 21161100 [TBL] [Abstract][Full Text] [Related]
16. Fully transparent thin-film transistor devices based on SnO2 nanowires. Dattoli EN; Wan Q; Guo W; Chen Y; Pan X; Lu W Nano Lett; 2007 Aug; 7(8):2463-9. PubMed ID: 17595151 [TBL] [Abstract][Full Text] [Related]
18. Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing. Lee BH; Sung MM J Nanosci Nanotechnol; 2007 Nov; 7(11):3758-64. PubMed ID: 18047053 [TBL] [Abstract][Full Text] [Related]
19. Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach. Gengler RY; Veligura A; Enotiadis A; Diamanti EK; Gournis D; Józsa C; van Wees BJ; Rudolf P Small; 2010 Jan; 6(1):35-9. PubMed ID: 19937610 [No Abstract] [Full Text] [Related]