These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 18654680)
1. The near-infrared (1.30-1.70 microm) absorption spectrum of methane down to 77 K. Kassi S; Gao B; Romanini D; Campargue A Phys Chem Chem Phys; 2008 Aug; 10(30):4410-9. PubMed ID: 18654680 [TBL] [Abstract][Full Text] [Related]
2. Accurate determination of low state rotational quantum numbers (J < 4) from planar-jet and liquid nitrogen cell absorption spectra of methane near 1.4 micron. Votava O; Masát M; Pracna P; Kassi S; Campargue A Phys Chem Chem Phys; 2010 Apr; 12(13):3145-55. PubMed ID: 20237703 [TBL] [Abstract][Full Text] [Related]
3. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review. Campargue A; Barbe A; De Backer-Barilly MR; Tyuterev VG; Kassi S Phys Chem Chem Phys; 2008 May; 10(20):2925-46. PubMed ID: 18473041 [TBL] [Abstract][Full Text] [Related]
4. The 1.28 μm transparency window of methane (7541-7919 cm⁻¹): empirical line lists and temperature dependence (80 K-300 K). Mondelain D; Kassi S; Wang L; Campargue A Phys Chem Chem Phys; 2011 May; 13(17):7985-96. PubMed ID: 21437294 [TBL] [Abstract][Full Text] [Related]
5. Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region. Kapitanov VA; Ponomarev YN; Tyryshkin IS; Rostov AP Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):811-8. PubMed ID: 17185026 [TBL] [Abstract][Full Text] [Related]
6. GaSb based lasers operating near 2.3 microm for high resolution absorption spectroscopy. Civis S; Horká V; Simecek T; Hulicius E; Pangrác J; Oswald J; Petrícek O; Rouillard Y; Alibert C; Werner R Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):3066-9. PubMed ID: 16165053 [TBL] [Abstract][Full Text] [Related]
7. Laser diode photoacoustic detection in the infrared and near infrared spectral ranges. Horká V; Civis S; Xu LH; Lees RM Analyst; 2005 Aug; 130(8):1148-54. PubMed ID: 16021213 [TBL] [Abstract][Full Text] [Related]
8. The near IR spectrum of the NO(X(2)Pi)-CH4 complex. Wen B; Meyer H J Chem Phys; 2009 Jul; 131(3):034304. PubMed ID: 19624194 [TBL] [Abstract][Full Text] [Related]
9. High resolution spectroscopy and the first global analysis of the Tetradecad region of methane 12CH4. Nikitin AV; Boudon V; Wenger Ch; Albert S; Brown LR; Bauerecker S; Quack M Phys Chem Chem Phys; 2013 Jul; 15(25):10071-93. PubMed ID: 23714852 [TBL] [Abstract][Full Text] [Related]
10. High-Lying Rotational Levels of Water: Comparison of Calculated and Experimental Energy Levels for (000) and (010) up to J = 25 and 21. Lanquetin R; Coudert LH; Camy-Peyret C J Mol Spectrosc; 1999 May; 195(1):54-67. PubMed ID: 10191152 [TBL] [Abstract][Full Text] [Related]
11. [Study of CH4 spectroscopy at low temperature near 1.65 microm]. Gao W; Wang GS; Chen WD; Zhang WJ; Gao XM Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Dec; 31(12):3180-4. PubMed ID: 22295755 [TBL] [Abstract][Full Text] [Related]
12. The spectrum of CH2 near 1.36 and 0.92 microm: reevaluation of rotational level structure and perturbations in a(010). Kobayashi K; Hall GE; Sears TJ J Chem Phys; 2006 May; 124(18):184320. PubMed ID: 16709119 [TBL] [Abstract][Full Text] [Related]