These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18654690)

  • 1. Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2008 Aug; 10(30):4486-94. PubMed ID: 18654690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the electron-nuclear Schrodinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154107. PubMed ID: 18433190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2007 Dec; 127(22):224104. PubMed ID: 18081387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method.
    Ishikawa A; Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Mar; 128(12):124103. PubMed ID: 18376904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method.
    Nakashima H; Hijikata Y; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154108. PubMed ID: 18433191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method.
    Hijikata Y; Nakashima H; Nakatsuji H
    J Chem Phys; 2009 Jan; 130(2):024102. PubMed ID: 19154014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio study of ground state MH2, HMHe+ and MHe2(2+), M = Mg, Ca.
    Page AJ; von Nagy-Felsobuki EI
    Phys Chem Chem Phys; 2008 Mar; 10(9):1285-91. PubMed ID: 18292863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function.
    Nakatsuji H; Nakashima H; Kurokawa Y; Ishikawa A
    Phys Rev Lett; 2007 Dec; 99(24):240402. PubMed ID: 18233425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Møller-Plesset perturbation energies and distances for HeC(20) extrapolated to the complete basis set limit.
    Varandas AJ
    J Comput Chem; 2009 Feb; 30(3):379-88. PubMed ID: 18629809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational solution of the Schrödinger equation using plane waves in adaptive coordinates: The radial case.
    Pérez-Jordá JM
    J Chem Phys; 2010 Jan; 132(2):024110. PubMed ID: 20095666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative approach for the calculation of correlation energy in periodic systems: a hybrid MP2(B3LYP) study of the He-MgO(100) interaction.
    Martinez-Casado R; Mallia G; Harrison NM
    Chem Commun (Camb); 2011 Apr; 47(15):4385-7. PubMed ID: 21390399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of thermal properties of the metastable supersaturated vapor with the integral equation method.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2008 Feb; 128(5):054305. PubMed ID: 18266448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Scaling Functions of the Scaled Schrödinger Equation. II. Variational Examination of the Correct Scaling Functions with the Free Complement Theory Applied to the Helium Atom.
    Nakatsuji H; Nakashima H
    J Chem Theory Comput; 2024 May; 20(9):3749-3765. PubMed ID: 38683950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster.
    Kumar Paul A; Sardar S; Sarkar B; Adhikari S
    J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic computational model of a superfluid.
    Ovchinnikov M; Novikov A
    J Chem Phys; 2010 Jun; 132(21):214101. PubMed ID: 20528012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?
    Nakashima H; Nakatsuji H
    Phys Rev Lett; 2008 Dec; 101(24):240406. PubMed ID: 19113607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiabatic connection forms in density functional theory: H2 and the He isoelectronic series.
    Peach MJ; Miller AM; Teale AM; Tozer DJ
    J Chem Phys; 2008 Aug; 129(6):064105. PubMed ID: 18715049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A path-integral Langevin equation treatment of low-temperature doped helium clusters.
    Ing C; Hinsen K; Yang J; Zeng T; Li H; Roy PN
    J Chem Phys; 2012 Jun; 136(22):224309. PubMed ID: 22713049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.