These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18654773)
1. Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor. Yang YH; Kim JN; Song E; Kim E; Oh MK; Kim BG Appl Microbiol Biotechnol; 2008 Sep; 80(4):709-17. PubMed ID: 18654773 [TBL] [Abstract][Full Text] [Related]
2. Crp is a global regulator of antibiotic production in streptomyces. Gao C; Hindra ; Mulder D; Yin C; Elliot MA mBio; 2012 Dec; 3(6):. PubMed ID: 23232715 [TBL] [Abstract][Full Text] [Related]
3. A novel function of Streptomyces integration host factor (sIHF) in the control of antibiotic production and sporulation in Streptomyces coelicolor. Yang YH; Song E; Willemse J; Park SH; Kim WS; Kim EJ; Lee BR; Kim JN; van Wezel GP; Kim BG Antonie Van Leeuwenhoek; 2012 Mar; 101(3):479-92. PubMed ID: 22038127 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. McKenzie NL; Nodwell JR J Bacteriol; 2007 Jul; 189(14):5284-92. PubMed ID: 17513473 [TBL] [Abstract][Full Text] [Related]
5. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145. Ou X; Zhang B; Zhang L; Dong K; Liu C; Zhao G; Ding X Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):877-82. PubMed ID: 18850053 [TBL] [Abstract][Full Text] [Related]
6. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Sevcikova B; Kormanec J Arch Microbiol; 2004 May; 181(5):384-9. PubMed ID: 15054568 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Uguru GC; Stephens KE; Stead JA; Towle JE; Baumberg S; McDowall KJ Mol Microbiol; 2005 Oct; 58(1):131-50. PubMed ID: 16164554 [TBL] [Abstract][Full Text] [Related]
8. LuxR-Type SCO6993 Negatively Regulates Antibiotic Production at the Transcriptional Stage by Binding to Promoters of Pathway-Specific Regulatory Genes in Tsevelkhoroloo M; Xiaoqiang L; Jin XM; Shin JH; Lee CR; Kang Y; Hong SK J Microbiol Biotechnol; 2022 Sep; 32(9):1134-1145. PubMed ID: 36116920 [TBL] [Abstract][Full Text] [Related]
9. Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor. Lu YW; San Roman AK; Gehring AM J Bacteriol; 2008 Oct; 190(20):6903-8. PubMed ID: 18689472 [TBL] [Abstract][Full Text] [Related]
10. An overview of the two-component system GarR/GarS role on antibiotic production in Streptomyces coelicolor. Cruz-Bautista R; Zelarayan-Agüero A; Ruiz-Villafán B; Escalante-Lozada A; Rodríguez-Sanoja R; Sánchez S Appl Microbiol Biotechnol; 2024 Apr; 108(1):306. PubMed ID: 38656376 [TBL] [Abstract][Full Text] [Related]
11. An ABC transporter complex containing S-adenosylmethionine (SAM)-induced ATP-binding protein is involved in antibiotics production and SAM signaling in Streptomyces coelicolor M145. Lee SK; Mo S; Suh JW Biotechnol Lett; 2012 Oct; 34(10):1907-14. PubMed ID: 22911564 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2). Kim MW; Lee BR; You S; Kim EJ; Kim JN; Song E; Yang YH; Hwang D; Kim BG Appl Microbiol Biotechnol; 2018 Apr; 102(7):3243-3253. PubMed ID: 29455385 [TBL] [Abstract][Full Text] [Related]
13. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Huang J; Shi J; Molle V; Sohlberg B; Weaver D; Bibb MJ; Karoonuthaisiri N; Lih CJ; Kao CM; Buttner MJ; Cohen SN Mol Microbiol; 2005 Dec; 58(5):1276-87. PubMed ID: 16313616 [TBL] [Abstract][Full Text] [Related]
14. Carbon Catabolite Regulation of Secondary Metabolite Formation and Morphological Differentiation in Streptomyces coelicolor. Romero-Rodríguez A; Ruiz-Villafán B; Tierrafría VH; Rodríguez-Sanoja R; Sánchez S Appl Biochem Biotechnol; 2016 Nov; 180(6):1152-1166. PubMed ID: 27372741 [TBL] [Abstract][Full Text] [Related]
15. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Shu D; Chen L; Wang W; Yu Z; Ren C; Zhang W; Yang S; Lu Y; Jiang W Appl Microbiol Biotechnol; 2009 Jan; 81(6):1149-60. PubMed ID: 18949475 [TBL] [Abstract][Full Text] [Related]
16. NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Yang YH; Song E; Kim EJ; Lee K; Kim WS; Park SS; Hahn JS; Kim BG Appl Microbiol Biotechnol; 2009 Mar; 82(3):501-11. PubMed ID: 19083232 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). Lian W; Jayapal KP; Charaniya S; Mehra S; Glod F; Kyung YS; Sherman DH; Hu WS BMC Genomics; 2008 Jan; 9():56. PubMed ID: 18230178 [TBL] [Abstract][Full Text] [Related]
18. In Search of the E. coli Compounds that Change the Antibiotic Production Pattern of Streptomyces coelicolor During Inter-species Interaction. Mavituna F; Luti KJ; Gu L Enzyme Microb Technol; 2016 Aug; 90():45-52. PubMed ID: 27241291 [TBL] [Abstract][Full Text] [Related]
19. Functional connexion of bacterioferritin in antibiotic production and morphological differentiation in Streptomyces coelicolor. García-Martín J; García-Abad L; Santamaría RI; Díaz M Microb Cell Fact; 2024 Aug; 23(1):234. PubMed ID: 39182107 [TBL] [Abstract][Full Text] [Related]
20. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. Hunt AC; Servín-González L; Kelemen GH; Buttner MJ J Bacteriol; 2005 Jan; 187(2):716-28. PubMed ID: 15629942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]