These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18655037)

  • 1. Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows.
    Felten M; Staroske W; Jaeger MS; Schwille P; Duschl C
    Electrophoresis; 2008 Jul; 29(14):2987-96. PubMed ID: 18655037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.
    Ai Y; Joo SW; Jiang Y; Xuan X; Qian S
    Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis.
    Grom F; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2006 Apr; 27(7):1386-93. PubMed ID: 16568408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis.
    Aubry N; Singh P
    Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions.
    Krishnan R; Sullivan BD; Mifflin RL; Esener SC; Heller MJ
    Electrophoresis; 2008 May; 29(9):1765-74. PubMed ID: 18393345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels.
    Pommer MS; Zhang Y; Keerthi N; Chen D; Thomson JA; Meinhart CD; Soh HT
    Electrophoresis; 2008 Mar; 29(6):1213-8. PubMed ID: 18288670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoresis of nanoparticles.
    Kadaksham AT; Singh P; Aubry N
    Electrophoresis; 2004 Nov; 25(21-22):3625-32. PubMed ID: 15565698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of stable stacking zones in a flow stream for sample immobilization in microfluidic systems.
    Astorga-Wells J; Vollmer S; Bergman T; Jörnvall H
    Anal Chem; 2007 Feb; 79(3):1057-63. PubMed ID: 17263335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic vortices and traveling waves in nondilute colloidal dispersions.
    Pérez CL; Posner JD
    Langmuir; 2010 Jun; 26(12):9261-8. PubMed ID: 20359179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated particle electrophoretic motion and separation in converging-diverging microchannels.
    Xuan X; Xu B; Li D
    Anal Chem; 2005 Jul; 77(14):4323-8. PubMed ID: 16013842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfabricated electrical SPLITT system.
    Narayanan N; Saldanha A; Gale BK
    Lab Chip; 2006 Jan; 6(1):105-14. PubMed ID: 16372076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.