BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18655076)

  • 21. A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp. ATCC 33002 and detection of in vitro halogenase activity.
    Wynands I; van Pée KH
    FEMS Microbiol Lett; 2004 Aug; 237(2):363-7. PubMed ID: 15321684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two pathways for pyrrole formation in coumermycin A(1) biosynthesis: the central pyrrole moiety is formed from L-threonine.
    Siebenberg S; Burkard N; Knuplesch A; Gust B; Grond S; Heide L
    Chembiochem; 2011 Nov; 12(17):2677-85. PubMed ID: 21953874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite.
    Höfer I; Crüsemann M; Radzom M; Geers B; Flachshaar D; Cai X; Zeeck A; Piel J
    Chem Biol; 2011 Mar; 18(3):381-91. PubMed ID: 21439483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structure of hormaomycin and one of its all-peptide aza-analogues in solution: syntheses and biological activities of new hormaomycin analogues.
    Reinscheid UM; Zlatopolskiy BD; Griesinger C; Zeeck A; de Meijere A
    Chemistry; 2005 May; 11(10):2929-45. PubMed ID: 15754385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemoenzymatic formation of novel aminocoumarin antibiotics by the enzymes CouN1 and CouN7.
    Fridman M; Balibar CJ; Lupoli T; Kahne D; Walsh CT; Garneau-Tsodikova S
    Biochemistry; 2007 Jul; 46(28):8462-71. PubMed ID: 17580964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of the nargenicin A1 pyrrole moiety from Nocardia sp. CS682.
    Maharjan S; Aryal N; Bhattarai S; Koju D; Lamichhane J; Sohng JK
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):687-96. PubMed ID: 21927992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.
    Cai X; Teta R; Kohlhaas C; Crüsemann M; Ueoka R; Mangoni A; Freeman MF; Piel J
    Chem Biol; 2013 Jun; 20(6):839-46. PubMed ID: 23790494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis.
    Galm U; Heller S; Shapiro S; Page M; Li SM; Heide L
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1307-12. PubMed ID: 15047534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NovJ/NovK catalyze benzylic oxidation of a beta-hydroxyl tyrosyl-S-pantetheinyl enzyme during aminocoumarin ring formation in novobiocin biosynthesis.
    Pacholec M; Hillson NJ; Walsh CT
    Biochemistry; 2005 Sep; 44(38):12819-26. PubMed ID: 16171397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and analysis of the simocyclinone biosynthetic gene cluster of Streptomyces antibioticus Tü 6040.
    Galm U; Schimana J; Fiedler HP; Schmidt J; Li SM; Heide L
    Arch Microbiol; 2002 Aug; 178(2):102-14. PubMed ID: 12115055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the aminocoumarin ligase SimL from the simocyclinone pathway and tandem incubation with NovM,P,N from the novobiocin pathway.
    Pacholec M; Freel Meyers CL; Oberthür M; Kahne D; Walsh CT
    Biochemistry; 2005 Mar; 44(12):4949-56. PubMed ID: 15779922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters.
    Eustáquio AS; Gust B; Galm U; Li SM; Chater KF; Heide L
    Appl Environ Microbiol; 2005 May; 71(5):2452-9. PubMed ID: 15870333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biosynthetic gene clusters of aminocoumarin antibiotics.
    Li SM; Heide L
    Planta Med; 2006 Oct; 72(12):1093-9. PubMed ID: 16868863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tü6071: analysis of the gene cluster and generation of derivatives.
    Dürr C; Schnell HJ; Luzhetskyy A; Murillo R; Weber M; Welzel K; Vente A; Bechthold A
    Chem Biol; 2006 Apr; 13(4):365-77. PubMed ID: 16632249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved mutasynthetic approaches for the production of modified aminocoumarin antibiotics.
    Anderle C; Hennig S; Kammerer B; Li SM; Wessjohann L; Gust B; Heide L
    Chem Biol; 2007 Aug; 14(8):955-67. PubMed ID: 17719494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230.
    Piraee M; Vining LC
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):1-5. PubMed ID: 12080419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An artificial pathway to 3,4-dihydroxybenzoic acid allows generation of new aminocoumarin antibiotic recognized by catechol transporters of E. coli.
    Alt S; Burkard N; Kulik A; Grond S; Heide L
    Chem Biol; 2011 Mar; 18(3):304-13. PubMed ID: 21439475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis.
    Balibar CJ; Garneau-Tsodikova S; Walsh CT
    Chem Biol; 2007 Jun; 14(6):679-90. PubMed ID: 17584615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New aminocoumarin antibiotics from genetically engineered Streptomyces strains.
    Li SM; Heide L
    Curr Med Chem; 2005; 12(4):419-27. PubMed ID: 15720250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis.
    Kawasaki T; Sakurai F; Nagatsuka SY; Hayakawa Y
    J Antibiot (Tokyo); 2009 May; 62(5):271-6. PubMed ID: 19329986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.