These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 18656225)

  • 41. Problems of operation and main reasons for failure of membranes in tertiary treatment systems.
    Lazarova V; Gallego S; García Molina V; Rougé P
    Water Sci Technol; 2008; 57(11):1777-84. PubMed ID: 18547930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes.
    Abdelmelek SB; Greaves J; Ishida KP; Cooper WJ; Song W
    Environ Sci Technol; 2011 Apr; 45(8):3665-71. PubMed ID: 21384915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reverse osmosis desalination: water sources, technology, and today's challenges.
    Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P
    Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward improved boron removal in RO by membrane modification: feasibility and challenges.
    Bernstein R; Belfer S; Freger V
    Environ Sci Technol; 2011 Apr; 45(8):3613-20. PubMed ID: 21417224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of transmembrane pressure and feed concentration on the retention of arsenic, chromium and cadmium from water by nanofiltration.
    Babaee Y; Mousavi SM; Danesh S; Baratian A
    J Environ Sci Eng; 2010 Jan; 52(1):1-6. PubMed ID: 21114097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea.
    Choi K; Kim Y; Park J; Park CK; Kim M; Kim HS; Kim P
    Sci Total Environ; 2008 Nov; 405(1-3):120-8. PubMed ID: 18684486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources.
    Vergili I
    J Environ Manage; 2013 Sep; 127():177-87. PubMed ID: 23708199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Treatability of organic fractions derived from secondary effluent by reverse osmosis membrane.
    Hu JY; Ong SL; Shan JH; Kang JB; Ng WJ
    Water Res; 2003 Nov; 37(19):4801-9. PubMed ID: 14568067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.
    Tao G; Viswanath B; Kekre K; Lee LY; Ng HY; Ong SL; Seah H
    Water Sci Technol; 2011; 64(1):77-82. PubMed ID: 22053461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia.
    Al-Rifai JH; Gabelish CL; Schäfer AI
    Chemosphere; 2007 Oct; 69(5):803-15. PubMed ID: 17583770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment.
    Paxéus N
    Water Sci Technol; 2004; 50(5):253-60. PubMed ID: 15497855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.
    Kegel FS; Rietman BM; Verliefde AR
    Water Sci Technol; 2010; 61(10):2603-10. PubMed ID: 20453334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of immersed MF (IMF) followed by reverse osmosis (RO) membrane for wastewater reclamation: A case study in Malaysia.
    Ujang Z; Ng KS; Tg Hamzah TH; Roger P; Ismail MR; Shahabudin SM; Abdul Hamid MH
    Water Sci Technol; 2007; 56(9):103-8. PubMed ID: 18025737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human pharmaceuticals, antioxidants, and plasticizers in wastewater treatment plant and water reclamation plant effluents.
    Soliman MA; Pedersen JA; Park H; Castaneda-Jimenez A; Stenstrom MK; Suffet IH
    Water Environ Res; 2007 Feb; 79(2):156-67. PubMed ID: 17370841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. N-nitrosamine rejection by reverse osmosis membranes: a full-scale study.
    Fujioka T; Khan SJ; McDonald JA; Roux A; Poussade Y; Drewes JE; Nghiem LD
    Water Res; 2013 Oct; 47(16):6141-8. PubMed ID: 24008222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Treatment of membrane concentrates: phosphate removal and reduction of scaling potential.
    Sperlich A; Warschke D; Wegmann C; Ernst M; Jekel M
    Water Sci Technol; 2010; 61(2):301-6. PubMed ID: 20107255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of vegetable oily wastewater using an integrated microfiltration-reverse osmosis system.
    Yu X; Zhong Z; Xing W
    Water Sci Technol; 2010; 61(2):455-62. PubMed ID: 20107272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. State of the art and review on the treatment technologies of water reverse osmosis concentrates.
    Pérez-González A; Urtiaga AM; Ibáñez R; Ortiz I
    Water Res; 2012 Feb; 46(2):267-83. PubMed ID: 22119366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine.
    Pronk W; Palmquist H; Biebow M; Boller M
    Water Res; 2006 Apr; 40(7):1405-12. PubMed ID: 16530802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.