BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18656360)

  • 1. The TACC proteins: TACC-ling microtubule dynamics and centrosome function.
    Peset I; Vernos I
    Trends Cell Biol; 2008 Aug; 18(8):379-88. PubMed ID: 18656360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo.
    Gergely F; Kidd D; Jeffers K; Wakefield JG; Raff JW
    EMBO J; 2000 Jan; 19(2):241-52. PubMed ID: 10637228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division.
    Thakur HC; Singh M; Nagel-Steger L; Prumbaum D; Fansa EK; Gremer L; Ezzahoini H; Abts A; Schmitt L; Raunser S; Ahmadian MR; Piekorz RP
    Biol Chem; 2013 Nov; 394(11):1411-23. PubMed ID: 23787465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase-independent manner.
    Thakur HC; Singh M; Nagel-Steger L; Kremer J; Prumbaum D; Fansa EK; Ezzahoini H; Nouri K; Gremer L; Abts A; Schmitt L; Raunser S; Ahmadian MR; Piekorz RP
    J Biol Chem; 2014 Jan; 289(1):74-88. PubMed ID: 24273164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming acidic coiled-coil proteins (TACCs) in human cancer.
    Ha GH; Kim JL; Breuer EK
    Cancer Lett; 2013 Aug; 336(1):24-33. PubMed ID: 23624299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types.
    Nwagbara BU; Faris AE; Bearce EA; Erdogan B; Ebbert PT; Evans MF; Rutherford EL; Enzenbacher TB; Lowery LA
    Mol Biol Cell; 2014 Nov; 25(21):3350-62. PubMed ID: 25187649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes.
    Singh P; Thomas GE; Gireesh KK; Manna TK
    J Biol Chem; 2014 Nov; 289(46):31719-31735. PubMed ID: 25246530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small compound targeting TACC3 revealed its different spatiotemporal contributions for spindle assembly in cancer cells.
    Yao R; Kondoh Y; Natsume Y; Yamanaka H; Inoue M; Toki H; Takagi R; Shimizu T; Yamori T; Osada H; Noda T
    Oncogene; 2014 Aug; 33(33):4242-52. PubMed ID: 24077290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TACCing on new functions for the TSC2 tumor suppressor.
    Golemis EA
    Cell Cycle; 2010 Apr; 9(7):1232-3. PubMed ID: 20404523
    [No Abstract]   [Full Text] [Related]  

  • 10. Aurora A: working from dawn to dusk in mitosis.
    Lioutas A; Vernos I
    Cell Cycle; 2014; 13(4):499-500. PubMed ID: 24419151
    [No Abstract]   [Full Text] [Related]  

  • 11. Aurora A kinase and its substrate TACC3 are required for central spindle assembly.
    Lioutas A; Vernos I
    EMBO Rep; 2013 Sep; 14(9):829-36. PubMed ID: 23887685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGFR-TACC gene fusions in human glioma.
    Lasorella A; Sanson M; Iavarone A
    Neuro Oncol; 2017 Apr; 19(4):475-483. PubMed ID: 27852792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).
    Katoh M
    Int J Mol Med; 2016 Jul; 38(1):3-15. PubMed ID: 27245147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing.
    Helsten T; Elkin S; Arthur E; Tomson BN; Carter J; Kurzrock R
    Clin Cancer Res; 2016 Jan; 22(1):259-67. PubMed ID: 26373574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma.
    Di Stefano AL; Fucci A; Frattini V; Labussiere M; Mokhtari K; Zoppoli P; Marie Y; Bruno A; Boisselier B; Giry M; Savatovsky J; Touat M; Belaid H; Kamoun A; Idbaih A; Houillier C; Luo FR; Soria JC; Tabernero J; Eoli M; Paterra R; Yip S; Petrecca K; Chan JA; Finocchiaro G; Lasorella A; Sanson M; Iavarone A
    Clin Cancer Res; 2015 Jul; 21(14):3307-17. PubMed ID: 25609060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-wide association study identifies a locus associated with knee extension strength in older Japanese individuals.
    Ito S; Takuwa H; Kakehi S; Someya Y; Kaga H; Kumahashi N; Kuwata S; Wakatsuki T; Kadowaki M; Yamamoto S; Abe T; Takeda M; Ishikawa Y; Liu X; Otomo N; Suetsugu H; Koike Y; Hikino K; Tomizuka K; Momozawa Y; Ozaki K; Isomura M; Nabika T; Kaneko H; Ishijima M; Kawamori R; Watada H; Tamura Y; Uchio Y; Ikegawa S; Terao C
    Commun Biol; 2024 May; 7(1):513. PubMed ID: 38769351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases.
    Torres Robles J; Lou HJ; Shi G; Pan PL; Turk BE
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2316599120. PubMed ID: 37988460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the role of GAS41 in cancer progression.
    Ji K; Li L; Liu H; Shen Y; Jiang J; Zhang M; Teng H; Yan X; Zhang Y; Cai Y; Zhou H
    Cancer Cell Int; 2023 Oct; 23(1):245. PubMed ID: 37853482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-canonical functions of a mutant TSC2 protein in mitotic division.
    Chalkley ML; Mersfelder RB; Sundberg M; Armstrong LC; Sahin M; Ihrie RA; Ess KC
    PLoS One; 2023; 18(10):e0292086. PubMed ID: 37792789
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.