BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18656507)

  • 1. Fatty acid oxidation in the energostatic control of eating--a new idea.
    Langhans W
    Appetite; 2008 Nov; 51(3):446-51. PubMed ID: 18656507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of eating by hepatic oxidation of fatty acids. A note of caution.
    Allen MS; Bradford BJ
    Appetite; 2009 Oct; 53(2):272-3; author reply 274-6. PubMed ID: 19540287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating.
    Langhans W; Leitner C; Arnold M
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R554-65. PubMed ID: 21148477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of mercaptoacetate's effects on feeding and fat metabolism by dietary medium- and long-chain triacylglycerols in rats.
    Mansouri A; Koss MD; Brandt K; Geary N; Langhans W; Leonhardt M
    Nutrition; 2008 Apr; 24(4):360-5. PubMed ID: 18234475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic-mediated inhibition of feeding by mercaptoacetate in food-deprived rats.
    Brandt K; Arnold M; Geary N; Langhans W; Leonhardt M
    Pharmacol Biochem Behav; 2006 Dec; 85(4):722-7. PubMed ID: 17175014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ketone body and the inhibition of fatty acid oxidation on the food intake of the chick.
    Sashihara K; Miyamoto M; Ohgushi A; Denbow DM; Furuse M
    Br Poult Sci; 2001 Jul; 42(3):405-8. PubMed ID: 11469564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercaptoacetate fails to block the feeding-inhibitory effect of the beta3-adrenergic receptor agonist CGP 12177A.
    Brandt K; Geary N; Langhans W; Leonhardt M
    Physiol Behav; 2006 Sep; 89(2):128-32. PubMed ID: 16872643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing hepatic mitochondrial fatty acid oxidation stimulates eating in food-deprived mice.
    Mansouri A; Pacheco-López G; Ramachandran D; Arnold M; Leitner C; Prip-Buus C; Langhans W; Morral N
    Am J Physiol Regul Integr Comp Physiol; 2015 Jan; 308(2):R131-7. PubMed ID: 25427767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological regulation through learnt control of appetites by contingencies among signals from external and internal environments.
    Booth DA
    Appetite; 2008 Nov; 51(3):433-41. PubMed ID: 18640162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid oxidation and control of food intake.
    Leonhardt M; Langhans W
    Physiol Behav; 2004 Dec; 83(4):645-51. PubMed ID: 15621070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of food intake by metabolism of fuels: a comparison across species.
    Allen MS; Bradford BJ
    Proc Nutr Soc; 2012 Aug; 71(3):401-9. PubMed ID: 22704548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of food intake by fatty acid oxidation and ketogenesis.
    Scharrer E
    Nutrition; 1999 Sep; 15(9):704-14. PubMed ID: 10467616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.
    Fujikawa T; Fujita R; Iwaki Y; Matsumura S; Fushiki T; Inoue K
    Physiol Behav; 2010 Oct; 101(3):370-5. PubMed ID: 20619281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral specificity of effects of 2-mercaptoacetate on independent ingestion in developing rats.
    Swithers SE; Peters RL; Shin HS
    Dev Psychobiol; 1999 Mar; 34(2):101-7. PubMed ID: 10086228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enterocyte as an energy flow sensor in the control of eating.
    Langhans W
    Forum Nutr; 2010; 63():75-84. PubMed ID: 19955775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid metabolism, the central nervous system, and feeding.
    Ronnett GV; Kleman AM; Kim EK; Landree LE; Tu Y
    Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():201S-207S. PubMed ID: 17021367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothalamic sensing of fatty acids.
    Lam TK; Schwartz GJ; Rossetti L
    Nat Neurosci; 2005 May; 8(5):579-84. PubMed ID: 15856066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From fat to full: peripheral and central mechanisms controlling food intake and energy balance: view from the chair.
    Sharkey KA
    Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():239S-241S. PubMed ID: 17021374
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA.
    Lane MD; Wolfgang M; Cha SH; Dai Y
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S49-54. PubMed ID: 18719599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of fatty acid beta-oxidation attenuates the reinforcing effects and palatability to fat.
    Suzuki A; Yamane T; Fushiki T
    Nutrition; 2006 Apr; 22(4):401-7. PubMed ID: 16457991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.