BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 18656541)

  • 1. Molecular engineering and design of therapeutic antibodies.
    Presta LG
    Curr Opin Immunol; 2008 Aug; 20(4):460-70. PubMed ID: 18656541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions.
    Grevys A; Bern M; Foss S; Bratlie DB; Moen A; Gunnarsen KS; Aase A; Michaelsen TE; Sandlie I; Andersen JT
    J Immunol; 2015 Jun; 194(11):5497-508. PubMed ID: 25904551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function.
    Presta LG
    Adv Drug Deliv Rev; 2006 Aug; 58(5-6):640-56. PubMed ID: 16904789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When binding is enough: nonactivating antibody formats.
    Labrijn AF; Aalberse RC; Schuurman J
    Curr Opin Immunol; 2008 Aug; 20(4):479-85. PubMed ID: 18577454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates.
    Vincent KJ; Zurini M
    Biotechnol J; 2012 Dec; 7(12):1444-50. PubMed ID: 23125076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease.
    Petkova SB; Akilesh S; Sproule TJ; Christianson GJ; Al Khabbaz H; Brown AC; Presta LG; Meng YG; Roopenian DC
    Int Immunol; 2006 Dec; 18(12):1759-69. PubMed ID: 17077181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to engineer and identify IgG1 variants with improved FcRn binding or effector function.
    Kelley RF; Meng YG
    Methods Mol Biol; 2012; 901():277-93. PubMed ID: 22723108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects.
    Strome SE; Sausville EA; Mann D
    Oncologist; 2007 Sep; 12(9):1084-95. PubMed ID: 17914078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection, design, and engineering of therapeutic antibodies.
    Presta LG
    J Allergy Clin Immunol; 2005 Oct; 116(4):731-6; quiz 737. PubMed ID: 16210043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies.
    Muda M; Gross AW; Dawson JP; He C; Kurosawa E; Schweickhardt R; Dugas M; Soloviev M; Bernhardt A; Fischer D; Wesolowski JS; Kelton C; Neuteboom B; Hock B
    Protein Eng Des Sel; 2011 May; 24(5):447-54. PubMed ID: 21498564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and characterization of a novel tetravalent anti-CD22 antibody with improved antitumor activity and pharmacokinetics.
    Liu XY; Pop LM; Roopenian DC; Ghetie V; Vitetta ES; Smallshaw JE
    Int Immunopharmacol; 2006 May; 6(5):791-9. PubMed ID: 16546710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations for the development of therapeutic monoclonal antibodies.
    Swann PG; Tolnay M; Muthukkumar S; Shapiro MA; Rellahan BL; Clouse KA
    Curr Opin Immunol; 2008 Aug; 20(4):493-9. PubMed ID: 18586093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibodies, Fc receptors and cancer.
    Nimmerjahn F; Ravetch JV
    Curr Opin Immunol; 2007 Apr; 19(2):239-45. PubMed ID: 17291742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced elimination of IgG antibodies by engineering the variable region.
    Igawa T; Tsunoda H; Tachibana T; Maeda A; Mimoto F; Moriyama C; Nanami M; Sekimori Y; Nabuchi Y; Aso Y; Hattori K
    Protein Eng Des Sel; 2010 May; 23(5):385-92. PubMed ID: 20159773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending human IgG half-life using structure-guided design.
    Booth BJ; Ramakrishnan B; Narayan K; Wollacott AM; Babcock GJ; Shriver Z; Viswanathan K
    MAbs; 2018 Oct; 10(7):1098-1110. PubMed ID: 29947573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humanized IgG1 variants with differential binding properties to the neonatal Fc receptor: relationship to pharmacokinetics in mice and primates.
    Datta-Mannan A; Witcher DR; Tang Y; Watkins J; Jiang W; Wroblewski VJ
    Drug Metab Dispos; 2007 Jan; 35(1):86-94. PubMed ID: 17050651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates.
    Yeung YA; Leabman MK; Marvin JS; Qiu J; Adams CW; Lien S; Starovasnik MA; Lowman HB
    J Immunol; 2009 Jun; 182(12):7663-71. PubMed ID: 19494290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotype and glycoform selection for antibody therapeutics.
    Jefferis R
    Arch Biochem Biophys; 2012 Oct; 526(2):159-66. PubMed ID: 22465822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fc-engineered antibodies with immune effector functions completely abolished.
    Wilkinson I; Anderson S; Fry J; Julien LA; Neville D; Qureshi O; Watts G; Hale G
    PLoS One; 2021; 16(12):e0260954. PubMed ID: 34932587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.