These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 18656895)
1. Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR. Su Y; Mani R; Doherty T; Waring AJ; Hong M J Mol Biol; 2008 Sep; 381(5):1133-44. PubMed ID: 18656895 [TBL] [Abstract][Full Text] [Related]
2. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
3. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
4. Solution NMR studies of cell-penetrating peptides in model membrane systems. Mäler L Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785 [TBL] [Abstract][Full Text] [Related]
5. Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Yamaguchi S; Hong T; Waring A; Lehrer RI; Hong M Biochemistry; 2002 Aug; 41(31):9852-62. PubMed ID: 12146951 [TBL] [Abstract][Full Text] [Related]
6. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
7. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Kwon B; Waring AJ; Hong M Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145 [TBL] [Abstract][Full Text] [Related]
8. Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR. Buffy JJ; Waring AJ; Lehrer RI; Hong M Biochemistry; 2003 Nov; 42(46):13725-34. PubMed ID: 14622019 [TBL] [Abstract][Full Text] [Related]
9. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Tang M; Waring AJ; Lehrer RI; Hong M Biophys J; 2006 May; 90(10):3616-24. PubMed ID: 16500957 [TBL] [Abstract][Full Text] [Related]
10. Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3. Hirst DJ; Lee TH; Swann MJ; Unabia S; Park Y; Hahm KS; Aguilar MI Eur Biophys J; 2011 Apr; 40(4):503-14. PubMed ID: 21222117 [TBL] [Abstract][Full Text] [Related]
12. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
13. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Witte K; Olausson BE; Walrant A; Alves ID; Vogel A Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351 [TBL] [Abstract][Full Text] [Related]
14. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Wolf J; Aisenbrey C; Harmouche N; Raya J; Bertani P; Voievoda N; Süss R; Bechinger B Biophys J; 2017 Sep; 113(6):1290-1300. PubMed ID: 28734478 [TBL] [Abstract][Full Text] [Related]
15. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related]
17. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. Heller WT; Zolnierczuk PA Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):565-572. PubMed ID: 30550881 [TBL] [Abstract][Full Text] [Related]
18. Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy. Zhang L; Liu L; Maltsev S; Lorigan GA; Dabney-Smith C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):413-8. PubMed ID: 24144541 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. Oñate-Garzón J; Manrique-Moreno M; Trier S; Leidy C; Torres R; Patiño E J Antibiot (Tokyo); 2017 Mar; 70(3):238-245. PubMed ID: 27999446 [TBL] [Abstract][Full Text] [Related]
20. Lipid and peptide dynamics in membranes upon insertion of n-alkyl-beta-D-glucopyranosides. Meier M; Seelig J Biophys J; 2010 Apr; 98(8):1529-38. PubMed ID: 20409472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]