These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 18656945)
1. Simple molecule-based fluorescent sensors for vapor detection of TNT. Zyryanov GV; Palacios MA; Anzenbacher P Org Lett; 2008 Sep; 10(17):3681-4. PubMed ID: 18656945 [TBL] [Abstract][Full Text] [Related]
2. Iptycene-based fluorescent sensors for nitroaromatics and TNT. Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics. Zhang S; Lü F; Gao L; Ding L; Fang Y Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091 [TBL] [Abstract][Full Text] [Related]
4. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related]
5. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. Sohn H; Sailor MJ; Magde D; Trogler WC J Am Chem Soc; 2003 Apr; 125(13):3821-30. PubMed ID: 12656615 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of High-Fluorescent Diphenyl-anthracene Derivatives and Application in Detection of Nitroaromatic Explosives and Fingerprint Identification. Lai J; Pan Q; Ma Q; Shan X; Chen L; Gao J Chem Asian J; 2024 Jan; 19(2):e202300775. PubMed ID: 38059381 [TBL] [Abstract][Full Text] [Related]
7. Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor. Sanchez JC; Toal SJ; Wang Z; Dugan RE; Trogler WC J Forensic Sci; 2007 Nov; 52(6):1308-13. PubMed ID: 17944906 [TBL] [Abstract][Full Text] [Related]
8. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285 [TBL] [Abstract][Full Text] [Related]
9. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection. Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887 [TBL] [Abstract][Full Text] [Related]
10. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991 [TBL] [Abstract][Full Text] [Related]
11. The novel anthracene decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-trinitrotoluene (TNT). Özcan E; Tümay SO; Keşan G; Yeşilot S; Çoşut B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117115. PubMed ID: 31141770 [TBL] [Abstract][Full Text] [Related]
12. Small-Molecule Turn-On Fluorescent Probes for RDX. Mosca L; Karimi Behzad S; Anzenbacher P J Am Chem Soc; 2015 Jul; 137(25):7967-9. PubMed ID: 26074208 [TBL] [Abstract][Full Text] [Related]
13. Detection of Nitroaromatic Explosives in Air by Amino-Functionalized Carbon Nanotubes. Ferrari C; Attolini G; Bosi M; Frigeri C; Frigeri P; Gombia E; Lazzarini L; Rossi F; Seravalli L; Trevisi G; Lolli R; Aversa L; Verucchi R; Musayeva N; Alizade M; Quluzade S; Orujov T; Sansone F; Baldini L; Rispoli F Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457985 [TBL] [Abstract][Full Text] [Related]
14. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Senesac LR; Yi D; Greve A; Hales JH; Davis ZJ; Nicholson DM; Boisen A; Thundat T Rev Sci Instrum; 2009 Mar; 80(3):035102. PubMed ID: 19334947 [TBL] [Abstract][Full Text] [Related]
15. Design, implementation, and field testing of a portable fluorescence-based vapor sensor. Aernecke MJ; Guo J; Sonkusale S; Walt DR Anal Chem; 2009 Jul; 81(13):5281-90. PubMed ID: 19563211 [TBL] [Abstract][Full Text] [Related]
16. FRET- and PET-based sensing in a single material: expanding the dynamic range of an ultra-sensitive nitroaromatic explosives assay. Wang Y; La A; Brückner C; Lei Y Chem Commun (Camb); 2012 Oct; 48(79):9903-5. PubMed ID: 22935771 [TBL] [Abstract][Full Text] [Related]
17. Efficient sensing of explosives by using fluorescent nonporous films of oligophenyleneethynylene derivatives thanks to optimal structure orientation and exciton migration. Caron T; Pasquinet E; van der Lee A; Pansu RB; Rouessac V; Clavaguera S; Bouhadid M; Serein-Spirau F; Lère-Porte JP; Montméat P Chemistry; 2014 Nov; 20(46):15069-76. PubMed ID: 25257621 [TBL] [Abstract][Full Text] [Related]
18. A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives: A new strategy for the mask-free discrimination of TNT and TNP within same sample. Zhang Z; Chen S; Shi R; Ji J; Wang D; Jin S; Han T; Zhou C; Shu Q Talanta; 2017 May; 166():228-233. PubMed ID: 28213227 [TBL] [Abstract][Full Text] [Related]
19. Organic nanofibrils based on linear carbazole trimer for explosive sensing. Zhang C; Che Y; Yang X; Bunes BR; Zang L Chem Commun (Camb); 2010 Aug; 46(30):5560-2. PubMed ID: 20577671 [TBL] [Abstract][Full Text] [Related]
20. Regio- and stereoselective homocoupling of gamma-arylated tert-propargyl alcohols with liberation of a ketone molecule and successive cyclization to produce fluorescent dihydrofuran derivatives. Funayama A; Satoh T; Miura M J Am Chem Soc; 2005 Nov; 127(44):15354-5. PubMed ID: 16262383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]