These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18657391)

  • 1. Spatio-temporal motifs 'remembered' in neuronal networks following profound hypothermia.
    Rubinsky L; Raichman N; Lavee J; Frenk H; Ben-Jacob E
    Neural Netw; 2008 Nov; 21(9):1232-7. PubMed ID: 18657391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of hypothermia on cultured neuronal networks using multi-electrode arrays.
    Rubinsky L; Raichman N; Baruchi I; Shein M; Lavee J; Frenk H; Ben-Jacob E
    J Neurosci Methods; 2007 Mar; 160(2):288-93. PubMed ID: 17081617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks.
    Raichman N; Ben-Jacob E
    J Neurosci Methods; 2008 May; 170(1):96-110. PubMed ID: 18281097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifestation of function-follow-form in cultured neuronal networks.
    Volman V; Baruchi I; Ben-Jacob E
    Phys Biol; 2005 Jun; 2(2):98-110. PubMed ID: 16204862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and plasticity in developing neuronal networks in vitro.
    van Pelt J; Vajda I; Wolters PS; Corner MA; Ramakers GJ
    Prog Brain Res; 2005; 147():173-88. PubMed ID: 15581705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of synchronized network activity by highly active neurons.
    Shein M; Volman V; Raichman N; Hanein Y; Ben-Jacob E
    Phys Biol; 2008 Sep; 5(3):036008. PubMed ID: 18780962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coemergence of regularity and complexity during neural network development.
    Fuchs E; Ayali A; Robinson A; Hulata E; Ben-Jacob E
    Dev Neurobiol; 2007 Nov; 67(13):1802-14. PubMed ID: 17701997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cultured neuronal networks using intraburst firing characteristics.
    Stegenga J; Le Feber J; Marani E; Rutten WL
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1382-90. PubMed ID: 18390329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays.
    Chen C; Chen L; Lin Y; Zeng S; Luo Q
    Biosystems; 2006 Aug; 85(2):137-43. PubMed ID: 16533555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
    Van Pelt J; Corner MA; Wolters PS; Rutten WL; Ramakers GJ
    Neurosci Lett; 2004 May; 361(1-3):86-9. PubMed ID: 15135900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development.
    Chiappalone M; Bove M; Vato A; Tedesco M; Martinoia S
    Brain Res; 2006 Jun; 1093(1):41-53. PubMed ID: 16712817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal pattern analysis via spiking neurons.
    Natschläger T; Ruf B
    Network; 1998 Aug; 9(3):319-32. PubMed ID: 9861993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.