These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18657391)

  • 61. Complex evolution of spike patterns during burst propagation through feed-forward networks.
    Teramae JN; Fukai T
    Biol Cybern; 2008 Aug; 99(2):105-14. PubMed ID: 18685860
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin.
    Scarlatos A; Cadotte AJ; DeMarse TB; Welt BA
    J Food Sci; 2008 Apr; 73(3):E129-36. PubMed ID: 18387107
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of glial release and somatic receptors on bursting in synchronized neuronal networks.
    Zhan X; Lai PY; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011907. PubMed ID: 21867213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.
    Rothkegel A; Lehnertz K
    Chaos; 2009 Mar; 19(1):015109. PubMed ID: 19335013
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns.
    Corner MA
    Brain Res Rev; 2008 Nov; 59(1):221-44. PubMed ID: 18722470
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
    Wagenaar DA; Pine J; Potter SM
    BMC Neurosci; 2006 Feb; 7():11. PubMed ID: 16464257
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays.
    Maccione A; Garofalo M; Nieus T; Tedesco M; Berdondini L; Martinoia S
    J Neurosci Methods; 2012 Jun; 207(2):161-71. PubMed ID: 22516778
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Application of penalized splines in analyzing neuronal data.
    Maringwa JT; Faes C; Geys H; Molenberghs G; Cadarso-Suárez C; Pardo-Vázquez JL; Leborán V; Acunña C
    Biom J; 2009 Feb; 51(1):203-16. PubMed ID: 19197962
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional clustering in hippocampal cultures: relating network structure and dynamics.
    Feldt S; Wang JX; Shtrahman E; Dzakpasu R; Olariu E; Zochowski M
    Phys Biol; 2010 Oct; 7(4):046004. PubMed ID: 20978314
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Belief propagation in networks of spiking neurons.
    Steimer A; Maass W; Douglas R
    Neural Comput; 2009 Sep; 21(9):2502-23. PubMed ID: 19548806
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Grid cells: the position code, neural network models of activity, and the problem of learning.
    Welinder PE; Burak Y; Fiete IR
    Hippocampus; 2008; 18(12):1283-300. PubMed ID: 19021263
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
    Fellin T
    J Neurochem; 2009 Feb; 108(3):533-44. PubMed ID: 19187090
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Can we observe collective neuronal activity from macroscopic aggregate signals?
    Hadjipapas A; Casagrande E; Nevado A; Barnes GR; Green G; Holliday IE
    Neuroimage; 2009 Feb; 44(4):1290-303. PubMed ID: 19041404
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures.
    Meyer JF; Wolf B; Gross GW
    IEEE Trans Biomed Eng; 2009 May; 56(5):1512-23. PubMed ID: 19203881
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Deterministic neural dynamics transmitted through neural networks.
    Asai Y; Guha A; Villa AE
    Neural Netw; 2008 Aug; 21(6):799-809. PubMed ID: 18675536
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hybrid neuronal network studies under dynamic clamp.
    Dorval AD; Bettencourt J; Netoff TI; White JA
    Methods Mol Biol; 2007; 403():219-31. PubMed ID: 18827998
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
    Kang G; Lee JH; Lee CS; Nam Y
    Lab Chip; 2009 Nov; 9(22):3236-42. PubMed ID: 19865730
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of ongoing dynamics in neural networks.
    Yanagawa T; Mogi K
    Neurosci Res; 2009 Jun; 64(2):177-84. PubMed ID: 19428698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.