BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18657435)

  • 1. The role of phosphorylated residues in peptide-peptide noncovalent complexes formation.
    Jackson SN; Moyer SC; Woods AS
    J Am Soc Mass Spectrom; 2008 Oct; 19(10):1535-41. PubMed ID: 18657435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the fragmentation patterns of the phosphate-arginine noncovalent bond.
    Jackson SN; Wang HY; Woods AS
    J Proteome Res; 2005; 4(6):2360-3. PubMed ID: 16335986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of ECD/ETD to identify the site of electrostatic interaction in noncovalent complexes.
    Jackson SN; Dutta S; Woods AS
    J Am Soc Mass Spectrom; 2009 Feb; 20(2):176-9. PubMed ID: 18835725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/Ion trap mass spectrometry.
    Moyer SC; Cotter RJ; Woods AS
    J Am Soc Mass Spectrom; 2002 Mar; 13(3):274-83. PubMed ID: 11908807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides.
    Palumbo AM; Tepe JJ; Reid GE
    J Proteome Res; 2008 Feb; 7(2):771-9. PubMed ID: 18181561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histidine, the less interactive cousin of arginine.
    Muller L; Jackson SN; Woods AS
    Eur J Mass Spectrom (Chichester); 2019 Apr; 25(2):212-218. PubMed ID: 31018697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate group-driven fragmentation of multiply charged phosphopeptide anions. Improved recognition of peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray tandem mass spectrometry.
    Edelson-Averbukh M; Pipkorn R; Lehmann WD
    Anal Chem; 2006 Feb; 78(4):1249-56. PubMed ID: 16478119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphopeptide elution times in reversed-phase liquid chromatography.
    Kim J; Petritis K; Shen Y; Camp DG; Moore RJ; Smith RD
    J Chromatogr A; 2007 Nov; 1172(1):9-18. PubMed ID: 17935722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry.
    Bennett KL; Stensballe A; Podtelejnikov AV; Moniatte M; Jensen ON
    J Mass Spectrom; 2002 Feb; 37(2):179-90. PubMed ID: 11857762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium.
    Commodore JJ; Cassady CJ
    J Mass Spectrom; 2018 Dec; 53(12):1178-1188. PubMed ID: 30221809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving fragmentation of poorly fragmenting peptides and phosphopeptides during collision-induced dissociation by malondialdehyde modification of arginine residues.
    Leitner A; Foettinger A; Lindner W
    J Mass Spectrom; 2007 Jul; 42(7):950-9. PubMed ID: 17539043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation of phosphopeptides in an ion trap mass spectrometer.
    DeGnore JP; Qin J
    J Am Soc Mass Spectrom; 1998 Nov; 9(11):1175-88. PubMed ID: 9794085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron capture dissociation of singly and multiply phosphorylated peptides.
    Stensballe A; Jensen ON; Olsen JV; Haselmann KF; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(19):1793-800. PubMed ID: 11006587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of the gas-phase phosphate group loss and rearrangement in phosphorylated peptides.
    Rožman M
    J Mass Spectrom; 2011 Sep; 46(9):949-55. PubMed ID: 21915960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of phosphorylated peptides by double pseudoneutral loss extraction coupled with derivatization using N-(4-bromobenzoyl)aminoethanethiol.
    Mano N; Aoki S; Yamazaki T; Nagaya Y; Mori M; Abe K; Shimada M; Yamaguchi H; Goto T; Goto J
    Anal Chem; 2009 Nov; 81(22):9395-401. PubMed ID: 19845345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective molecular recognition of arginine by anionic salt bridge formation with bis-phosphate crown ethers: implications for gas phase peptide acidity from adduct dissociation.
    Julian RR; Beauchamp JL
    J Am Soc Mass Spectrom; 2004 Apr; 15(4):616-24. PubMed ID: 15047066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.
    Brahim B; Tabet JC; Alves S
    Eur J Mass Spectrom (Chichester); 2018 Feb; 24(1):168-177. PubMed ID: 29232990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of phosphorylated amino acids by fast-atom bombardment mass spectrometry.
    Dass C
    Rapid Commun Mass Spectrom; 1989 Aug; 3(8):264-6. PubMed ID: 2485178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the dephosphorylation of phosphotyrosine-containing peptides during post-source decay in matrix-assisted laser desorption/ionization.
    Metzger S; Hoffmann R
    J Mass Spectrom; 2000 Oct; 35(10):1165-77. PubMed ID: 11110089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.