These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18657512)
21. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers. Ringstad L; Protopapa E; Lindholm-Sethson B; Schmidtchen A; Nelson A; Malmsten M Langmuir; 2008 Jan; 24(1):208-16. PubMed ID: 18052298 [TBL] [Abstract][Full Text] [Related]
22. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
23. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Won T; Mohid SA; Choi J; Kim M; Krishnamoorthy J; Biswas I; Bhunia A; Lee D Biophys Chem; 2023 May; 296():106981. PubMed ID: 36871366 [TBL] [Abstract][Full Text] [Related]
24. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. Bocchinfuso G; Palleschi A; Orioni B; Grande G; Formaggio F; Toniolo C; Park Y; Hahm KS; Stella L J Pept Sci; 2009 Sep; 15(9):550-8. PubMed ID: 19455510 [TBL] [Abstract][Full Text] [Related]
25. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101 [TBL] [Abstract][Full Text] [Related]
26. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
27. Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Haney EF; Nathoo S; Vogel HJ; Prenner EJ Chem Phys Lipids; 2010 Jan; 163(1):82-93. PubMed ID: 19799887 [TBL] [Abstract][Full Text] [Related]
28. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Wieprecht T; Apostolov O; Beyermann M; Seelig J Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006 [TBL] [Abstract][Full Text] [Related]
29. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. Paredes SD; Kim S; Rooney MT; Greenwood AI; Hristova K; Cotten ML Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183236. PubMed ID: 32126226 [TBL] [Abstract][Full Text] [Related]
30. Membrane Permeabilization Mechanisms. Matsuzaki K Adv Exp Med Biol; 2019; 1117():9-16. PubMed ID: 30980350 [TBL] [Abstract][Full Text] [Related]
31. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. Bennett WF; Hong CK; Wang Y; Tieleman DP J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120 [TBL] [Abstract][Full Text] [Related]
32. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
33. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Matsuzaki K Biochim Biophys Acta; 1999 Dec; 1462(1-2):1-10. PubMed ID: 10590299 [TBL] [Abstract][Full Text] [Related]
34. Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation. Shahmiri M; Enciso M; Adda CG; Smith BJ; Perugini MA; Mechler A Sci Rep; 2016 Nov; 6():38184. PubMed ID: 27901075 [TBL] [Abstract][Full Text] [Related]
36. Activity and characterization of a pH-sensitive antimicrobial peptide. Hitchner MA; Santiago-Ortiz LE; Necelis MR; Shirley DJ; Palmer TJ; Tarnawsky KE; Vaden TD; Caputo GA Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182984. PubMed ID: 31075228 [TBL] [Abstract][Full Text] [Related]
37. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Bagheri M; Beyermann M; Dathe M Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020 [TBL] [Abstract][Full Text] [Related]
38. Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Marín-Medina N; Ramírez DA; Trier S; Leidy C Appl Microbiol Biotechnol; 2016 Dec; 100(24):10251-10263. PubMed ID: 27837316 [TBL] [Abstract][Full Text] [Related]
39. Antimicrobial peptides (AMPs): peptide structure and mode of action. Park Y; Hahm KS J Biochem Mol Biol; 2005 Sep; 38(5):507-16. PubMed ID: 16202228 [TBL] [Abstract][Full Text] [Related]
40. Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Tang M; Waring AJ; Hong M Biochim Biophys Acta; 2009 Feb; 1788(2):514-21. PubMed ID: 19059201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]