These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18657512)
61. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D. Wang KF; Nagarajan R; Mello CM; Camesano TA J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290 [TBL] [Abstract][Full Text] [Related]
62. Biophysical Insights into the Antitumoral Activity of Crotalicidin against Breast Cancer Model Membranes. Klaiss-Luna MC; Giraldo-Lorza JM; Jemioła-Rzemińska M; Strzałka K; Manrique-Moreno M Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003414 [TBL] [Abstract][Full Text] [Related]
63. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. Wi S; Kim C J Phys Chem B; 2008 Sep; 112(36):11402-14. PubMed ID: 18700738 [TBL] [Abstract][Full Text] [Related]
64. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578 [TBL] [Abstract][Full Text] [Related]
65. Computational studies of protegrin antimicrobial peptides: a review. Bolintineanu DS; Kaznessis YN Peptides; 2011 Jan; 32(1):188-201. PubMed ID: 20946928 [TBL] [Abstract][Full Text] [Related]
66. Biophysical investigation into the antibacterial action of modelin-5-NH Dennison SR; Hauß T; Badiani K; Harris F; Phoenix DA Soft Matter; 2019 May; 15(20):4215-4226. PubMed ID: 31074477 [TBL] [Abstract][Full Text] [Related]
67. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Blondelle SE; Lohner K; Aguilar M Biochim Biophys Acta; 1999 Dec; 1462(1-2):89-108. PubMed ID: 10590304 [TBL] [Abstract][Full Text] [Related]
68. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Aisenbrey C; Marquette A; Bechinger B Adv Exp Med Biol; 2019; 1117():33-64. PubMed ID: 30980352 [TBL] [Abstract][Full Text] [Related]
69. Lipid Membrane Interactions of the Cationic Antimicrobial Peptide Chimeras Melimine and Cys-Melimine. Berry T; Dutta D; Chen R; Leong A; Wang H; Donald WA; Parviz M; Cornell B; Willcox M; Kumar N; Cranfield CG Langmuir; 2018 Sep; 34(38):11586-11592. PubMed ID: 30119612 [TBL] [Abstract][Full Text] [Related]
70. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Domanov YA; Kinnunen PK Biophys J; 2006 Dec; 91(12):4427-39. PubMed ID: 16997872 [TBL] [Abstract][Full Text] [Related]
71. Effects of the cationic antimicrobial peptide eumenitin from the venom of solitary wasp Eumenes rubronotatus in planar lipid bilayers: surface charge and pore formation activity. Arcisio-Miranda M; dos Santos Cabrera MP; Konno K; Rangel M; Procopio J Toxicon; 2008 Apr; 51(5):736-45. PubMed ID: 18206199 [TBL] [Abstract][Full Text] [Related]
72. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
73. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane. Tang YL; Shi YH; Zhao W; Hao G; Le GW J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657 [TBL] [Abstract][Full Text] [Related]
74. Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores. Perrin BS; Fu R; Cotten ML; Pastor RW Biophys J; 2016 Sep; 111(6):1258-1266. PubMed ID: 27653484 [TBL] [Abstract][Full Text] [Related]
75. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study. Catte A; Wilson MR; Walker M; Oganesyan VS Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197 [TBL] [Abstract][Full Text] [Related]
76. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. Chongsiriwatana NP; Lin JS; Kapoor R; Wetzler M; Rea JAC; Didwania MK; Contag CH; Barron AE Sci Rep; 2017 Dec; 7(1):16718. PubMed ID: 29196622 [TBL] [Abstract][Full Text] [Related]
77. Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopies. Moraes LG; Fázio MA; Vieira RF; Nakaie CR; Miranda MT; Schreier S; Daffre S; Miranda A Biochim Biophys Acta; 2007 Jan; 1768(1):52-8. PubMed ID: 17027634 [TBL] [Abstract][Full Text] [Related]
78. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
79. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring. Wang KF; Nagarajan R; Camesano TA Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196 [TBL] [Abstract][Full Text] [Related]
80. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]