BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18657513)

  • 1. The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase.
    Kthiri F; Le HT; Tagourti J; Kern R; Malki A; Caldas T; Abdallah J; Landoulsi A; Richarme G
    Biochem Biophys Res Commun; 2008 Oct; 374(4):668-72. PubMed ID: 18657513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL.
    Lin J; Wilson MA
    J Biol Chem; 2011 Jun; 286(22):19459-69. PubMed ID: 21498507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase.
    Caldas T; Malki A; Kern R; Abdallah J; Richarme G
    Biochem Biophys Res Commun; 2006 May; 343(3):780-6. PubMed ID: 16563353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN.
    Le HT; Gautier V; Kthiri F; Kohiyama M; Katayama T; Richarme G
    Biochem Biophys Res Commun; 2011 Feb; 405(1):52-7. PubMed ID: 21195694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CnoX Is a Chaperedoxin: A Holdase that Protects Its Substrates from Irreversible Oxidation.
    Goemans CV; Vertommen D; Agrebi R; Collet JF
    Mol Cell; 2018 May; 70(4):614-627.e7. PubMed ID: 29754824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional diversity of YbbN/CnoX proteins: Insights from a comparative analysis of three thioredoxin-like oxidoreductases from Pseudomonas aeruginosa, Xylella fastidiosa and Escherichia coli.
    Meireles DA; Yokomizo CH; Silva FP; Venâncio TM; Degenhardt MFS; Oliveira CLP; Netto LES
    Redox Biol; 2024 Jun; 72():103128. PubMed ID: 38554523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel function of Escherichia coli chaperone DnaJ. Protein-disulfide isomerase.
    de Crouy-Chanel A; Kohiyama M; Richarme G
    J Biol Chem; 1995 Sep; 270(39):22669-72. PubMed ID: 7559385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin.
    Jurado P; de Lorenzo V; Fernández LA
    J Mol Biol; 2006 Mar; 357(1):49-61. PubMed ID: 16427080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DnaK functions as a central hub in the E. coli chaperone network.
    Calloni G; Chen T; Schermann SM; Chang HC; Genevaux P; Agostini F; Tartaglia GG; Hayer-Hartl M; Hartl FU
    Cell Rep; 2012 Mar; 1(3):251-64. PubMed ID: 22832197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase.
    Kern R; Malki A; Holmgren A; Richarme G
    Biochem J; 2003 May; 371(Pt 3):965-72. PubMed ID: 12549977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV
    Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2.
    El Hajjaji H; Dumoulin M; Matagne A; Colau D; Roos G; Messens J; Collet JF
    J Mol Biol; 2009 Feb; 386(1):60-71. PubMed ID: 19073194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T; Tsuruno K; Tanatsugu R; Miyazaki A; Kondo H; Tabata A; Whiley RA; Sonomoto K; Nagamune H
    Microbiol Immunol; 2018 Nov; 62(11):681-693. PubMed ID: 30239035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli.
    Ullers RS; Ang D; Schwager F; Georgopoulos C; Genevaux P
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3101-6. PubMed ID: 17360615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Escherichia coli YedU protein as a molecular chaperone.
    Malki A; Kern R; Abdallah J; Richarme G
    Biochem Biophys Res Commun; 2003 Feb; 301(2):430-6. PubMed ID: 12565879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ
    Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y
    Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.