BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 18657515)

  • 1. The human IKKbeta subunit kinase domain displays CK2-like phosphorylation specificity.
    Shaul JD; Farina A; Huxford T
    Biochem Biophys Res Commun; 2008 Sep; 374(3):592-7. PubMed ID: 18657515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation.
    Zandi E; Rothwarf DM; Delhase M; Hayakawa M; Karin M
    Cell; 1997 Oct; 91(2):243-52. PubMed ID: 9346241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-179 of IkappaB kinase beta plays a critical role in enzyme activation by promoting phosphorylation of activation loop serines.
    Byun MS; Choi J; Jue DM
    Exp Mol Med; 2006 Oct; 38(5):546-52. PubMed ID: 17079871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate.
    Zandi E; Chen Y; Karin M
    Science; 1998 Aug; 281(5381):1360-3. PubMed ID: 9721103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2.
    Zschoernig B; Mahlknecht U
    Biochem Biophys Res Commun; 2009 Apr; 381(3):372-7. PubMed ID: 19236849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional isoforms of IkappaB kinase alpha (IKKalpha) lacking leucine zipper and helix-loop-helix domains reveal that IKKalpha and IKKbeta have different activation requirements.
    McKenzie FR; Connelly MA; Balzarano D; Müller JR; Geleziunas R; Marcu KB
    Mol Cell Biol; 2000 Apr; 20(8):2635-49. PubMed ID: 10733566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal region of protein kinase CK2 alpha: How the structure can affect function and stability of the catalytic subunit.
    Grasselli E; Tomati V; Bernasconi MV; Nicolini C; Vergani L
    J Cell Biochem; 2004 May; 92(2):270-84. PubMed ID: 15108354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-tosyl-L-phenylalanine chloromethyl ketone inhibits NF-kappaB activation by blocking specific cysteine residues of IkappaB kinase beta and p65/RelA.
    Ha KH; Byun MS; Choi J; Jeong J; Lee KJ; Jue DM
    Biochemistry; 2009 Aug; 48(30):7271-8. PubMed ID: 19591457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulatory beta subunit of protein kinase CK2 contributes to the recognition of the substrate consensus sequence. A study with an eIF2 beta-derived peptide.
    Poletto G; Vilardell J; Marin O; Pagano MA; Cozza G; Sarno S; Falqués A; Itarte E; Pinna LA; Meggio F
    Biochemistry; 2008 Aug; 47(32):8317-25. PubMed ID: 18636746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation.
    Delhase M; Hayakawa M; Chen Y; Karin M
    Science; 1999 Apr; 284(5412):309-13. PubMed ID: 10195894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent activation of NF-kappa B by the tax transforming protein involves chronic phosphorylation of IkappaB kinase subunits IKKbeta and IKKgamma.
    Carter RS; Geyer BC; Xie M; Acevedo-Suárez CA; Ballard DW
    J Biol Chem; 2001 Jul; 276(27):24445-8. PubMed ID: 11325957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of human high mobility group N1 protein by protein kinase CK2.
    Jiang XG; Wang Y
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1497-503. PubMed ID: 16729963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells.
    Vilk G; Weber JE; Turowec JP; Duncan JS; Wu C; Derksen DR; Zien P; Sarno S; Donella-Deana A; Lajoie G; Pinna LA; Li SS; Litchfield DW
    Cell Signal; 2008 Nov; 20(11):1942-51. PubMed ID: 18662771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BID, an interaction partner of protein kinase CK2alpha.
    Olsen BB; Petersen J; Issinger OG
    Biol Chem; 2006 Apr; 387(4):441-9. PubMed ID: 16606343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta.
    Schomer-Miller B; Higashimoto T; Lee YK; Zandi E
    J Biol Chem; 2006 Jun; 281(22):15268-76. PubMed ID: 16597623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKbeta overexpression in human breast cancers.
    Ping B; He X; Xia W; Lee DF; Wei Y; Yu D; Mills G; Shi D; Hung MC
    Int J Oncol; 2006 Nov; 29(5):1103-10. PubMed ID: 17016640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase CK2 interacts with the splicing factor hPrp3p.
    Lehnert S; Götz C; Kartarius S; Schäfer B; Montenarh M
    Oncogene; 2008 Apr; 27(17):2390-400. PubMed ID: 18026141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of calmodulin fragments by protein kinase CK2. Mechanistic aspects and structural consequences.
    Arrigoni G; Marin O; Pagano MA; Settimo L; Paolin B; Meggio F; Pinna LA
    Biochemistry; 2004 Oct; 43(40):12788-98. PubMed ID: 15461451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning of IKKβ from the mandarin fish Siniperca chuatsi and its up-regulation in cells by ISKNV infection.
    Chen WJ; Guo CJ; Zhou ZC; Yuan LQ; Xiang ZM; Weng SP; Zhang YF; Yu XQ; He JG
    Vet Immunol Immunopathol; 2011 Jan; 139(1):61-6. PubMed ID: 20817314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation.
    Zhang J; Clark K; Lawrence T; Peggie MW; Cohen P
    Biochem J; 2014 Aug; 461(3):531-7. PubMed ID: 24911653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.