These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 18657515)
1. The human IKKbeta subunit kinase domain displays CK2-like phosphorylation specificity. Shaul JD; Farina A; Huxford T Biochem Biophys Res Commun; 2008 Sep; 374(3):592-7. PubMed ID: 18657515 [TBL] [Abstract][Full Text] [Related]
2. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Zandi E; Rothwarf DM; Delhase M; Hayakawa M; Karin M Cell; 1997 Oct; 91(2):243-52. PubMed ID: 9346241 [TBL] [Abstract][Full Text] [Related]
3. Cysteine-179 of IkappaB kinase beta plays a critical role in enzyme activation by promoting phosphorylation of activation loop serines. Byun MS; Choi J; Jue DM Exp Mol Med; 2006 Oct; 38(5):546-52. PubMed ID: 17079871 [TBL] [Abstract][Full Text] [Related]
4. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Zandi E; Chen Y; Karin M Science; 1998 Aug; 281(5381):1360-3. PubMed ID: 9721103 [TBL] [Abstract][Full Text] [Related]
5. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Zschoernig B; Mahlknecht U Biochem Biophys Res Commun; 2009 Apr; 381(3):372-7. PubMed ID: 19236849 [TBL] [Abstract][Full Text] [Related]
6. Functional isoforms of IkappaB kinase alpha (IKKalpha) lacking leucine zipper and helix-loop-helix domains reveal that IKKalpha and IKKbeta have different activation requirements. McKenzie FR; Connelly MA; Balzarano D; Müller JR; Geleziunas R; Marcu KB Mol Cell Biol; 2000 Apr; 20(8):2635-49. PubMed ID: 10733566 [TBL] [Abstract][Full Text] [Related]
7. C-terminal region of protein kinase CK2 alpha: How the structure can affect function and stability of the catalytic subunit. Grasselli E; Tomati V; Bernasconi MV; Nicolini C; Vergani L J Cell Biochem; 2004 May; 92(2):270-84. PubMed ID: 15108354 [TBL] [Abstract][Full Text] [Related]
8. N-tosyl-L-phenylalanine chloromethyl ketone inhibits NF-kappaB activation by blocking specific cysteine residues of IkappaB kinase beta and p65/RelA. Ha KH; Byun MS; Choi J; Jeong J; Lee KJ; Jue DM Biochemistry; 2009 Aug; 48(30):7271-8. PubMed ID: 19591457 [TBL] [Abstract][Full Text] [Related]
9. The regulatory beta subunit of protein kinase CK2 contributes to the recognition of the substrate consensus sequence. A study with an eIF2 beta-derived peptide. Poletto G; Vilardell J; Marin O; Pagano MA; Cozza G; Sarno S; Falqués A; Itarte E; Pinna LA; Meggio F Biochemistry; 2008 Aug; 47(32):8317-25. PubMed ID: 18636746 [TBL] [Abstract][Full Text] [Related]
10. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Delhase M; Hayakawa M; Chen Y; Karin M Science; 1999 Apr; 284(5412):309-13. PubMed ID: 10195894 [TBL] [Abstract][Full Text] [Related]
11. Persistent activation of NF-kappa B by the tax transforming protein involves chronic phosphorylation of IkappaB kinase subunits IKKbeta and IKKgamma. Carter RS; Geyer BC; Xie M; Acevedo-Suárez CA; Ballard DW J Biol Chem; 2001 Jul; 276(27):24445-8. PubMed ID: 11325957 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of human high mobility group N1 protein by protein kinase CK2. Jiang XG; Wang Y Biochem Biophys Res Commun; 2006 Jul; 345(4):1497-503. PubMed ID: 16729963 [TBL] [Abstract][Full Text] [Related]
13. Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Vilk G; Weber JE; Turowec JP; Duncan JS; Wu C; Derksen DR; Zien P; Sarno S; Donella-Deana A; Lajoie G; Pinna LA; Li SS; Litchfield DW Cell Signal; 2008 Nov; 20(11):1942-51. PubMed ID: 18662771 [TBL] [Abstract][Full Text] [Related]
14. BID, an interaction partner of protein kinase CK2alpha. Olsen BB; Petersen J; Issinger OG Biol Chem; 2006 Apr; 387(4):441-9. PubMed ID: 16606343 [TBL] [Abstract][Full Text] [Related]
15. Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta. Schomer-Miller B; Higashimoto T; Lee YK; Zandi E J Biol Chem; 2006 Jun; 281(22):15268-76. PubMed ID: 16597623 [TBL] [Abstract][Full Text] [Related]
16. Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKbeta overexpression in human breast cancers. Ping B; He X; Xia W; Lee DF; Wei Y; Yu D; Mills G; Shi D; Hung MC Int J Oncol; 2006 Nov; 29(5):1103-10. PubMed ID: 17016640 [TBL] [Abstract][Full Text] [Related]
17. Protein kinase CK2 interacts with the splicing factor hPrp3p. Lehnert S; Götz C; Kartarius S; Schäfer B; Montenarh M Oncogene; 2008 Apr; 27(17):2390-400. PubMed ID: 18026141 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation of calmodulin fragments by protein kinase CK2. Mechanistic aspects and structural consequences. Arrigoni G; Marin O; Pagano MA; Settimo L; Paolin B; Meggio F; Pinna LA Biochemistry; 2004 Oct; 43(40):12788-98. PubMed ID: 15461451 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning of IKKβ from the mandarin fish Siniperca chuatsi and its up-regulation in cells by ISKNV infection. Chen WJ; Guo CJ; Zhou ZC; Yuan LQ; Xiang ZM; Weng SP; Zhang YF; Yu XQ; He JG Vet Immunol Immunopathol; 2011 Jan; 139(1):61-6. PubMed ID: 20817314 [TBL] [Abstract][Full Text] [Related]
20. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. Zhang J; Clark K; Lawrence T; Peggie MW; Cohen P Biochem J; 2014 Aug; 461(3):531-7. PubMed ID: 24911653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]