These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18658053)

  • 1. Differences in age-related alterations in muscle contraction properties in rat tongue and hindlimb.
    Connor NP; Ota F; Nagai H; Russell JA; Leverson G
    J Speech Lang Hear Res; 2008 Aug; 51(4):818-27. PubMed ID: 18658053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aging on evoked retrusive tongue actions.
    Becker BJ; Russell JA; Connor NP
    Arch Oral Biol; 2015 Jun; 60(6):966-71. PubMed ID: 25847069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in contractile properties of tongue muscles in old rats.
    Ota F; Connor NP; Konopacki R
    Ann Otol Rhinol Laryngol; 2005 Oct; 114(10):799-803. PubMed ID: 16285271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aging on tongue protrusion forces in rats.
    Nagai H; Russell JA; Jackson MA; Connor NP
    Dysphagia; 2008 Jun; 23(2):116-21. PubMed ID: 17694408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats.
    Connor NP; Russell JA; Jackson MA; Kletzien H; Wang H; Schaser AJ; Leverson GE; Zealear DL
    Muscle Nerve; 2013 Feb; 47(2):230-40. PubMed ID: 23169566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hindlimb suspension on contractile properties of young and old rat muscles and the impact of electrical stimulation on the recovery process.
    Mercier C; Jobin J; Lépine C; Simard C
    Mech Ageing Dev; 1999 Jan; 106(3):305-20. PubMed ID: 10100158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties.
    Kletzien H; Russell JA; Leverson GE; Connor NP
    J Appl Physiol (1985); 2013 Feb; 114(4):472-81. PubMed ID: 23264540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related sex differences in tongue strength and muscle morphometry in a rat model.
    Rohl AH; Connor NP; Russell JA
    Arch Oral Biol; 2023 Nov; 155():105779. PubMed ID: 37556980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of dietary creatine supplements on the contractile properties of rat soleus and extensor digitorum longus muscles.
    McGuire M; Bradford A; MacDermott M
    Exp Physiol; 2001 Mar; 86(2):185-90. PubMed ID: 11429633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness and muscle function with age and reduced muscle use.
    Brown M; Fisher JS; Salsich G
    J Orthop Res; 1999 May; 17(3):409-14. PubMed ID: 10376731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.
    Payne AM; Dodd SL; Leeuwenburgh C
    J Appl Physiol (1985); 2003 Dec; 95(6):2554-62. PubMed ID: 12972444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of intrinsic tongue muscle properties with aging.
    Cullins MJ; Connor NP
    Muscle Nerve; 2017 Dec; 56(6):E119-E125. PubMed ID: 28181263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat.
    Westgaard RH; Lømo T
    J Neurosci; 1988 Dec; 8(12):4415-26. PubMed ID: 3199182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile properties of the tongue's genioglossus muscle and motor units in the rat.
    Sutlive TG; Shall MS; McClung JR; Goldberg SJ
    Muscle Nerve; 2000 Mar; 23(3):416-25. PubMed ID: 10679719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hind-limb suspension on young and adult skeletal muscle. I. Normal mice.
    Haida N; Fowler WM; Abresch RT; Larson DB; Sharman RB; Taylor RG; Entrikin RK
    Exp Neurol; 1989 Jan; 103(1):68-76. PubMed ID: 2912752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization.
    Fitts RH; Brimmer CJ
    J Appl Physiol (1985); 1985 Sep; 59(3):916-23. PubMed ID: 4055577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening.
    Meijer HJ; Rijkelijkhuizen JM; Huijing PA
    J Electromyogr Kinesiol; 2007 Dec; 17(6):698-707. PubMed ID: 17382560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle adaptations to hindlimb suspension in mature and old Fischer 344 rats.
    Stump CS; Tipton CM; Henriksen EJ
    J Appl Physiol (1985); 1997 Jun; 82(6):1875-81. PubMed ID: 9173953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tongue muscle contractile, fatigue, and fiber type properties in rats.
    Fogarty MJ; Sieck GC
    J Appl Physiol (1985); 2021 Sep; 131(3):1043-1055. PubMed ID: 34323593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.