BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18658211)

  • 1. Melittin-lipid bilayer interactions and the role of cholesterol.
    Wessman P; Strömstedt AA; Malmsten M; Edwards K
    Biophys J; 2008 Nov; 95(9):4324-36. PubMed ID: 18658211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.
    Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS
    Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single channel planar lipid bilayer recordings of the melittin variant MelP5.
    Fennouri A; Mayer SF; Schroeder TBH; Mayer M
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2051-2057. PubMed ID: 28720433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.
    Pan J; Khadka NK
    J Phys Chem B; 2016 May; 120(20):4625-34. PubMed ID: 27167473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bee venom toxin melittin with ganglioside GM1 bicelle.
    Khatun UL; Mukhopadhyay C
    Biophys Chem; 2013; 180-181():66-75. PubMed ID: 23850803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of cholesterol on melittin lipidation in neutral membranes.
    Britt HM; Mosely JA; Sanderson JM
    Phys Chem Chem Phys; 2019 Jan; 21(2):631-640. PubMed ID: 30540307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization.
    Wiedman G; Herman K; Searson P; Wimley WC; Hristova K
    Biochim Biophys Acta; 2013 May; 1828(5):1357-64. PubMed ID: 23384418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple membrane interactions and versatile vesicle deformations elicited by melittin.
    Takahashi T; Nomura F; Yokoyama Y; Tanaka-Takiguchi Y; Homma M; Takiguchi K
    Toxins (Basel); 2013 Apr; 5(4):637-64. PubMed ID: 23594437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.
    Strömstedt AA; Wessman P; Ringstad L; Edwards K; Malmsten M
    J Colloid Interface Sci; 2007 Jul; 311(1):59-69. PubMed ID: 17383670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergistic action of melittin and phospholipase A2 with lipid membranes: development of linear dichroism for membrane-insertion kinetics.
    Damianoglou A; Rodger A; Pridmore C; Dafforn TR; Mosely JA; Sanderson JM; Hicks MR
    Protein Pept Lett; 2010 Nov; 17(11):1351-62. PubMed ID: 20673225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes.
    Beschiaschvili G; Seelig J
    Biochemistry; 1990 Jan; 29(1):52-8. PubMed ID: 2322549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin.
    Zhou L; Narsimhan G; Wu X; Du F
    Colloids Surf B Biointerfaces; 2014 Nov; 123():419-28. PubMed ID: 25306255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation.
    Kuchinka E; Seelig J
    Biochemistry; 1989 May; 28(10):4216-21. PubMed ID: 2765482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers.
    Québatte G; Kitas E; Seelig J
    Biochim Biophys Acta; 2014 Mar; 1838(3):968-77. PubMed ID: 24184424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores.
    Allende D; Simon SA; McIntosh TJ
    Biophys J; 2005 Mar; 88(3):1828-37. PubMed ID: 15596510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of highly purified melittin into phosphatidylcholine bilayer vesicles.
    Schulze J; Mischeck U; Wigand S; Galla HJ
    Biochim Biophys Acta; 1987 Jul; 901(1):101-11. PubMed ID: 3036227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.