These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 186607)

  • 1. Stochastic versus augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences. Methods tested on cytochrome c amino acid sequences.
    Moore GW; Goodman M; Callahan C; Holmquist R; Moise H
    J Mol Biol; 1976 Jul; 105(1):15-37. PubMed ID: 186607
    [No Abstract]   [Full Text] [Related]  

  • 2. The evolution of the globin family genes: concordance of stochastic and augmented maximum parsimony genetic distances for alpha hemoglobin, beta hemoglobin and myoglobin phylogenies.
    Holmquist R; Jukes TH; Moise H; Goodman M; Moore GW
    J Mol Biol; 1976 Jul; 105(1):39-74. PubMed ID: 994186
    [No Abstract]   [Full Text] [Related]  

  • 3. A method for constructing maximum parsimony ancestral amino acid sequences on a given network.
    Moore GW; Barnabas J; Goodman M
    J Theor Biol; 1973 Mar; 38(3):459-85. PubMed ID: 4734980
    [No Abstract]   [Full Text] [Related]  

  • 4. A use for principal coordinate analysis in the comparison of protein sequences.
    Woolley KJ; Athalye M
    Biochem Biophys Res Commun; 1986 Nov; 140(3):808-13. PubMed ID: 3022735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C.
    Ambler RP
    Biochem J; 1974 Jan; 137(1):3-14. PubMed ID: 4362497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of cytochrome C investigated by the maximum parsimony method.
    Baba ML; Darga LL; Goodman M; Czelusniak J
    J Mol Evol; 1981; 17(4):197-213. PubMed ID: 6267311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical relationship between the number of nucleotide substitutions and interspecific identity of amino acid sequences in some proteins.
    Nei M; Chakraborty R
    J Mol Evol; 1976 May; 7(4):313-23. PubMed ID: 180298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid sequences of bacterial cytochromes c' and c-556.
    Ambler RP; Bartsch RG; Daniel M; Kamen MD; McLellan L; Meyer TE; Van Beeumen J
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6854-7. PubMed ID: 6273892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryote evolution: a view based on cytochrome c sequence data.
    McLaughlin PJ; Dayhoff MO
    J Mol Evol; 1973; 2(2-3):99-116. PubMed ID: 4377771
    [No Abstract]   [Full Text] [Related]  

  • 10. Correlation between prebiotic amino acid compositions and contemporary proteins.
    Ferrara L; Andini S; Temussi PA
    J Theor Biol; 1977 Jul; 67(2):241-54. PubMed ID: 197320
    [No Abstract]   [Full Text] [Related]  

  • 11. The covarion model for the evolution of proteins: parameter estimates and comparison with Holmquist, Cantor, and Jukes' stochastic model.
    Karon JM
    J Mol Evol; 1979 Mar; 12(3):197-218. PubMed ID: 220427
    [No Abstract]   [Full Text] [Related]  

  • 12. An examination of the constancy of the rate of molecular evolution.
    Langley CH; Fitch WM
    J Mol Evol; 1974; 3(3):161-77. PubMed ID: 4368400
    [No Abstract]   [Full Text] [Related]  

  • 13. Evolutionary clock: the rate of evolution of rattlesnake cytochrome c.
    Penny D
    J Mol Evol; 1974; 3(3):179-88. PubMed ID: 4368708
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular cloning of a cDNA encoding cytochrome c of Stellaria longipes (Caryophyllaceae)--and the evolutionary implications.
    Zhang XH; Chinnappa CC
    Mol Biol Evol; 1994 May; 11(3):365-75. PubMed ID: 8015432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation.
    Peacock D; Boulter D
    J Mol Biol; 1975 Jul; 95(4):513-27. PubMed ID: 168392
    [No Abstract]   [Full Text] [Related]  

  • 16. Amino acid sequence of a cytochrome c from the common Pacific lamprey, Entosphenus tridentatus.
    Nolan C; Fitch WM; Uzzell T; Weiss LJ; Margoliash E
    Biochemistry; 1973 Oct; 12(21):4052-60. PubMed ID: 4355549
    [No Abstract]   [Full Text] [Related]  

  • 17. Evolutionary changes in protein composition -- evidence for an optimal strategy.
    Coutelle R; Hofacker GL; Levine RD
    J Mol Evol; 1979 Jun; 13(1):57-72. PubMed ID: 458873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation studies on the evolution of amino acid sequences.
    Ohta T
    J Mol Evol; 1976 Jun; 8(1):1-12. PubMed ID: 940172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uniqueness of protein sequences: a Monte Carlo analysis.
    Saroff HA; Kutyna FA
    Bull Math Biol; 1981; 43(6):619-39. PubMed ID: 6274456
    [No Abstract]   [Full Text] [Related]  

  • 20. On the constancy of the evolutionary rate of cistrons.
    Ota T; Kimura M
    J Mol Evol; 1971; 1(1):18-25. PubMed ID: 4377445
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.