These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1866085)

  • 21. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis.
    Aaku-Saraste E; Hellwig A; Huttner WB
    Dev Biol; 1996 Dec; 180(2):664-79. PubMed ID: 8954735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apoptosis induced by glufosinate ammonium in the neuroepithelium of developing mouse embryos in culture.
    Watanabe T
    Neurosci Lett; 1997 Jan; 222(1):17-20. PubMed ID: 9121712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The myc oncogene and transdifferentiation of the retinal pigment epithelium].
    Beche-Belsot JS; Planque N; Martin P; Saule S
    J Soc Biol; 2001; 195(2):107-13. PubMed ID: 11723821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart.
    Maddox DM; Manlapat A; Roon P; Prasad P; Ganapathy V; Smith SB
    BMC Dev Biol; 2003 Jul; 3():6. PubMed ID: 12887734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of nonrandomly oriented cell division in shaping and bending of the neural plate.
    Sausedo RA; Smith JL; Schoenwolf GC
    J Comp Neurol; 1997 May; 381(4):473-88. PubMed ID: 9136804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell.
    Mochii M; Mazaki Y; Mizuno N; Hayashi H; Eguchi G
    Dev Biol; 1998 Jan; 193(1):47-62. PubMed ID: 9466887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [In vitro differentiation of embryonic stem cells mediated by the supernatant of retinal cells and retinoid acid].
    Zhang L; Tang S; Luo Y; Huang B; Zhang C; Chen X
    Yan Ke Xue Bao; 2003 Jun; 19(2):122-5. PubMed ID: 12870351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth hormone localization in the neural retina and retinal pigmented epithelium of embryonic chicks.
    Harvey S; Kakebeeke M; Sanders EJ
    J Mol Neurosci; 2004; 22(1-2):139-45. PubMed ID: 14742918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transdifferentiation of chicken embryo neural retina into pigment epithelium: indications of its biochemical basis.
    Pritchard DJ
    J Embryol Exp Morphol; 1981 Apr; 62():47-62. PubMed ID: 7276821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell mingling during mammalian embryogenesis.
    Gardner RL
    J Cell Sci Suppl; 1986; 4():337-56. PubMed ID: 3528198
    [No Abstract]   [Full Text] [Related]  

  • 31. Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture.
    Rothermel A; Willbold E; Degrip WJ; Layer PG
    Proc Biol Sci; 1997 Sep; 264(1386):1293-302. PubMed ID: 9332014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of phagocytosis by the retinal pigment epithelium in normal and delayed amelanotic chickens.
    Lahiri D; Bailey CF
    Exp Eye Res; 1993 Jun; 56(6):625-34. PubMed ID: 8595805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell proliferation during the early stages of human eye development.
    Bozanić D; Saraga-Babić M
    Anat Embryol (Berl); 2004 Aug; 208(5):381-8. PubMed ID: 15252731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterned expression of BDNF and NT-3 in the retina and anterior segment of the developing mammalian eye.
    Bennett JL; Zeiler SR; Jones KR
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2996-3005. PubMed ID: 10549663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The requirement of pax6 for postnatal eye development: evidence from experimental mouse chimeras.
    Li S; Goldowitz D; Swanson DJ
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3292-300. PubMed ID: 17591901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple requirements for Hes 1 during early eye formation.
    Lee HY; Wroblewski E; Philips GT; Stair CN; Conley K; Reedy M; Mastick GS; Brown NL
    Dev Biol; 2005 Aug; 284(2):464-78. PubMed ID: 16038893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positional variations in germinal cell growth in pigment-chimeric eyes of Xenopus: posterior half of the developing eye studied in genetic chimerae and in computer simulations.
    Hunt RK; Bodenstein L; Cohen JS; Sidman RL
    Proc Natl Acad Sci U S A; 1988 May; 85(10):3459-63. PubMed ID: 3368454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of serotoninergic neurons from ventricular cells of the mouse neural plate in vitro.
    Buse E
    Int J Dev Neurosci; 1987; 5(2):107-15. PubMed ID: 3503492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of the pigment epithelium and the neuroretina after intraocular pressure increase.
    Li WW; Au CY; Yew DT
    Cell Mol Biol; 1986; 32(4):435-40. PubMed ID: 3742554
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.