These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18662102)

  • 1. Production-passage-time approximation: a new approximation method to accelerate the simulation process of enzymatic reactions.
    Kuwahara H; Myers CJ
    J Comput Biol; 2008 Sep; 15(7):779-92. PubMed ID: 18662102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A full stochastic description of the Michaelis-Menten reaction for small systems.
    Arányi P; Tóth J
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Legitimacy of the stochastic Michaelis-Menten approximation.
    Sanft KR; Gillespie DT; Petzold LR
    IET Syst Biol; 2011 Jan; 5(1):58. PubMed ID: 21261403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient and exact stochastic simulation method to analyze rare events in biochemical systems.
    Kuwahara H; Mura I
    J Chem Phys; 2008 Oct; 129(16):165101. PubMed ID: 19045316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2005 Oct; 123(14):144917. PubMed ID: 16238434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general moment expansion method for stochastic kinetic models.
    Ale A; Kirk P; Stumpf MP
    J Chem Phys; 2013 May; 138(17):174101. PubMed ID: 23656108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.
    Goutsias J
    J Chem Phys; 2005 May; 122(18):184102. PubMed ID: 15918689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiabatic coarse-graining and simulations of stochastic biochemical networks.
    Sinitsyn NA; Hengartner N; Nemenman I
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10546-51. PubMed ID: 19525397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability.
    Thanh VH; Priami C; Zunino R
    J Chem Phys; 2016 Jun; 144(22):224108. PubMed ID: 27305997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic simulations of single-molecule enzyme networks.
    Armbruster D; Nagy JD; van de Rijt EA; Rooda JE
    J Phys Chem B; 2009 Apr; 113(16):5537-44. PubMed ID: 19326885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifractality in intracellular enzymatic reactions.
    Aranda JS; Salgado E; Muñoz-Diosdado A
    J Theor Biol; 2006 May; 240(2):209-17. PubMed ID: 16256143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The total quasi-steady-state approximation for fully competitive enzyme reactions.
    Pedersena MG; Bersani AM; Bersani E
    Bull Math Biol; 2007 Jan; 69(1):433-57. PubMed ID: 16850351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A moment closure method for stochastic reaction networks.
    Lee CH; Kim KH; Kim P
    J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abstract Next Subvolume Method: a logical process-based approach for spatial stochastic simulation of chemical reactions.
    Wang B; Hou B; Xing F; Yao Y
    Comput Biol Chem; 2011 Jun; 35(3):193-8. PubMed ID: 21704266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.