BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18662711)

  • 1. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization.
    Hayashi MA; Nascimento FD; Kerkis A; Oliveira V; Oliveira EB; Pereira A; Rádis-Baptista G; Nader HB; Yamane T; Kerkis I; Tersariol IL
    Toxicon; 2008 Sep; 52(3):508-17. PubMed ID: 18662711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological activities of a new crotamine-like peptide from Crotalus oreganus helleri on C2C12 and CHO cell lines, and ultrastructural changes on motor endplate and striated muscle.
    Salazar E; Rodriguez-Acosta A; Lucena S; Gonzalez R; McLarty MC; Sanchez O; Suntravat M; Garcia E; Finol HJ; Giron ME; Fernandez I; Deba F; Bessac BF; Sánchez EE
    Toxicon; 2020 Dec; 188():95-107. PubMed ID: 33065200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of tumor growth remission in a murine model for subcutaneous solid tumors - Benefits of associating the antitumor agent crotamine with mesoporous nanosilica particles to achieve improved dosing frequency and efficacy.
    Oyadomari WY; Anthero GL; Silva MRA; Porta LC; Oliveira V; Reid PF; Sant'Anna OA; Alves WA; Nani JV; Hayashi MAF
    Int J Pharm; 2023 Nov; 646():123420. PubMed ID: 37778514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of crotamine in human prostate cancer cell line.
    Alberghini-Dos-Santos JV; Sanchez CA; Bordon KCF; Pucca MB; Antunes LMG; Arantes EC; Oliveira IS
    Toxicon; 2024 May; 243():107746. PubMed ID: 38704124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-dependent cytotoxicity of second-generation oligonucleotides.
    Drygin D; Barone S; Bennett CF
    Nucleic Acids Res; 2004; 32(22):6585-94. PubMed ID: 15604456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells.
    Nascimento FD; Sancey L; Pereira A; Rome C; Oliveira V; Oliveira EB; Nader HB; Yamane T; Kerkis I; Tersariol IL; Coll JL; Hayashi MA
    Mol Pharm; 2012 Feb; 9(2):211-21. PubMed ID: 22142367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the rattlesnake toxin crotamine with model membranes.
    Costa BA; Sanches L; Gomide AB; Bizerra F; Dal Mas C; Oliveira EB; Perez KR; Itri R; Oguiura N; Hayashi MA
    J Phys Chem B; 2014 May; 118(20):5471-9. PubMed ID: 24754574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crotamine toxicity and efficacy in mouse models of melanoma.
    Pereira A; Kerkis A; Hayashi MA; Pereira AS; Silva FS; Oliveira EB; Prieto da Silva AR; Yamane T; Rádis-Baptista G; Kerkis I
    Expert Opin Investig Drugs; 2011 Sep; 20(9):1189-200. PubMed ID: 21834748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies.
    Bittenbinder MA; van Thiel J; Cardoso FC; Casewell NR; Gutiérrez JM; Kool J; Vonk FJ
    Commun Biol; 2024 Mar; 7(1):358. PubMed ID: 38519650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Rattlesnake Venoms.
    Phan P; Deshwal A; McMahon TA; Slikas M; Andrews E; Becker B; Kumar TKS
    Toxins (Basel); 2023 Dec; 16(1):. PubMed ID: 38276526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels.
    AlShammari AK; Abd El-Aziz TM; Al-Sabi A
    Toxins (Basel); 2023 Dec; 16(1):. PubMed ID: 38251229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Leaking-Proof Theranostic Nanoplatform for Tumor-Targeted and Dual-Modality Imaging-Guided Photodynamic Therapy.
    Jin D; Zhu Y; Liu M; Yu W; Yu J; Zheng X; Wang L; Wu Y; Wei K; Cheng J; Liu Y
    BME Front; 2023; 4():0015. PubMed ID: 37849678
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of a high-throughput in vitro screening method for the assessment of cell-damaging activities of snake venoms.
    Bittenbinder MA; Capinha L; Da Costa Pereira D; Slagboom J; van de Velde B; Casewell NR; Jennings P; Kool J; Vonk FJ
    PLoS Negl Trop Dis; 2023 Aug; 17(8):e0011564. PubMed ID: 37590328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crotamine/siRNA Nanocomplexes for Functional Downregulation of Syndecan-1 in Renal Proximal Tubular Epithelial Cells.
    Campeiro JD; Dam WA; Hayashi MAF; van den Born J
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemistry of snake venom and its medicinal potential.
    Oliveira AL; Viegas MF; da Silva SL; Soares AM; Ramos MJ; Fernandes PA
    Nat Rev Chem; 2022 Jul; 6(7):451-469. PubMed ID: 37117308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an Extracellular Matrix-Mimicking Fluorescent Polymer for the Detection of Proteolytic Venom Toxins.
    Wachtel E; Bittenbinder MA; van de Velde B; Slagboom J; de Monts de Savasse A; Alonso LL; Casewell NR; Vonk FJ; Kool J
    Toxins (Basel); 2023 Apr; 15(4):. PubMed ID: 37104232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of proteins isolated from Brazilian snakes on enterovirus A71 replication cycle: An approach against hand, foot and mouth disease.
    Shimizu JF; Feferbaum-Leite S; Santos IA; Martins DOS; Kingston NJ; Shegdar M; Zothner C; Sampaio SV; Harris M; Stonehouse NJ; Jardim ACG
    Int J Biol Macromol; 2023 Jun; 241():124519. PubMed ID: 37085072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemistry of snake venom and its medicinal potential.
    Oliveira AL; Viegas MF; da Silva SL; Soares AM; Ramos MJ; Fernandes PA
    Nat Rev Chem; 2022; 6(7):451-469. PubMed ID: 35702592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides.
    Roque-Borda CA; Gualque MWL; da Fonseca FH; Pavan FR; Santos-Filho NA
    Pharmaceutics; 2022 Apr; 14(5):. PubMed ID: 35631477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold.
    Eberle RJ; Gering I; Tusche M; Ostermann PN; Müller L; Adams O; Schaal H; Olivier DS; Amaral MS; Arni RK; Willbold D; Coronado MA
    Pharmaceuticals (Basel); 2022 Apr; 15(5):. PubMed ID: 35631367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.