BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18663411)

  • 21. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds.
    Tan Q; Tang H; Hu J; Hu Y; Zhou X; Tao Y; Wu Z
    Int J Nanomedicine; 2011; 6():929-42. PubMed ID: 21720505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors.
    Briganti E; Spiller D; Mirtelli C; Kull S; Counoupas C; Losi P; Senesi S; Di Stefano R; Soldani G
    J Control Release; 2010 Feb; 142(1):14-21. PubMed ID: 19811766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydopamine-modified konjac glucomannan scaffold with sustained release of vascular endothelial growth factor to promote angiogenesis.
    Zhu X; Wu S; Yang K; Wei W; Aziz Y; Yuan W; Miyatake H; Ito Y; Wei Z; Li J; Chen Y
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132333. PubMed ID: 38754686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delivery of basic fibroblast growth factor from gelatin microsphere scaffold for the growth of human umbilical vein endothelial cells.
    Zhu XH; Tabata Y; Wang CH; Tong YW
    Tissue Eng Part A; 2008 Dec; 14(12):1939-47. PubMed ID: 18636948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors.
    Losi P; Briganti E; Magera A; Spiller D; Ristori C; Battolla B; Balderi M; Kull S; Balbarini A; Di Stefano R; Soldani G
    Biomaterials; 2010 Jul; 31(20):5336-44. PubMed ID: 20381861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering.
    Thomas A; Bera J
    J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture.
    Poldervaart MT; Gremmels H; van Deventer K; Fledderus JO; Oner FC; Verhaar MC; Dhert WJ; Alblas J
    J Control Release; 2014 Jun; 184():58-66. PubMed ID: 24727077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.
    Eğri S; Eczacıoğlu N
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):321-329. PubMed ID: 26912262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing.
    Hori K; Sotozono C; Hamuro J; Yamasaki K; Kimura Y; Ozeki M; Tabata Y; Kinoshita S
    J Control Release; 2007 Apr; 118(2):169-76. PubMed ID: 17289206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering.
    Holland TA; Tabata Y; Mikos AG
    J Control Release; 2005 Jan; 101(1-3):111-25. PubMed ID: 15588898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of gelatin microparticles to delay the release of readily water-soluble materials.
    Lou Y; Groves MJ
    J Pharm Pharmacol; 1995 Feb; 47(2):97-102. PubMed ID: 7602475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.
    Poursamar SA; Hatami J; Lehner AN; da Silva CL; Ferreira FC; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():63-70. PubMed ID: 25579897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vascular endothelial growth factor release from alginate microspheres under simulated physiological compressive loading and the effect on human vascular endothelial cells.
    Li Q; Hou T; Zhao J; Xu J
    Tissue Eng Part A; 2011 Jul; 17(13-14):1777-85. PubMed ID: 21341993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.
    Agarwal T; Narayan R; Maji S; Behera S; Kulanthaivel S; Maiti TK; Banerjee I; Pal K; Giri S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1499-1506. PubMed ID: 27086289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.