These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 18663523)
1. Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Relwani L; Krishna P; Sudhakara Reddy M Curr Microbiol; 2008 Nov; 57(5):401-6. PubMed ID: 18663523 [TBL] [Abstract][Full Text] [Related]
2. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Stefanoni Rubio PJ; Godoy MS; Della Mónica IF; Pettinari MJ; Godeas AM; Scervino JM Curr Microbiol; 2016 Jan; 72(1):41-7. PubMed ID: 26407892 [TBL] [Abstract][Full Text] [Related]
3. Disruption of the L-arabitol dehydrogenase encoding gene in Aspergillus tubingensis results in increased xylanase production. Nikolaev I; Farmer Hansen S; Madrid S; de Vries RP Biotechnol J; 2013 Aug; 8(8):905-11. PubMed ID: 23713061 [TBL] [Abstract][Full Text] [Related]
4. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Reddy MS; Kumar S; Babita K; Reddy MS Bioresour Technol; 2002 Sep; 84(2):187-9. PubMed ID: 12139336 [TBL] [Abstract][Full Text] [Related]
5. A new strain of Aspergillus tubingensis for high-activity pectinase production. Huang D; Song Y; Liu Y; Qin Y Braz J Microbiol; 2019 Jan; 50(1):53-65. PubMed ID: 30610493 [TBL] [Abstract][Full Text] [Related]
6. Upstream and downstream processing of lovastatin by Aspergillus terreus. Mukhtar H; Ijaz SS; Ikram-ul-Haq Cell Biochem Biophys; 2014 Sep; 70(1):309-20. PubMed ID: 24671671 [TBL] [Abstract][Full Text] [Related]
7. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Iyer B; Rajput MS; Rajkumar S Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122 [TBL] [Abstract][Full Text] [Related]
8. do Nascimento GC; Batista RD; Santos CCADA; da Silva EM; de Paula FC; Mendes DB; de Oliveira DP; de Almeida AF ScientificWorldJournal; 2019; 2019():6956202. PubMed ID: 30728756 [No Abstract] [Full Text] [Related]
9. [Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard.]. Wang JJ; Yan AH; Wang W; Li JQ; Li YL Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3705-3711. PubMed ID: 29696871 [TBL] [Abstract][Full Text] [Related]
10. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Scervino JM; Papinutti VL; Godoy MS; Rodriguez MA; Della Monica I; Recchi M; Pettinari MJ; Godeas AM J Appl Microbiol; 2011 May; 110(5):1215-23. PubMed ID: 21324053 [TBL] [Abstract][Full Text] [Related]
11. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat. Gaind S Microbiol Res; 2016 Dec; 193():94-102. PubMed ID: 27825490 [TBL] [Abstract][Full Text] [Related]
12. Studies on polyol metabolism in Aspergillus niger. I. Nutritional requirements of a strain of Aspergillus niger cultivated on sorbitol as sole source of carbon. Desai BM; Modi VV; Shah VK Arch Mikrobiol; 1969; 67(1):6-11. PubMed ID: 5384566 [No Abstract] [Full Text] [Related]
13. Influence of nitrogen and carbon sources on the production of ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes. Medina A; Mateo EM; Valle-Algarra FM; Mateo F; Mateo R; Jiménez M Int J Food Microbiol; 2008 Feb; 122(1-2):93-9. PubMed ID: 18164776 [TBL] [Abstract][Full Text] [Related]
15. [Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil]. Qiao ZW; Hong JP; Xie YH; Li LX Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2294-300. PubMed ID: 24380351 [TBL] [Abstract][Full Text] [Related]
16. Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytases. Irving GC; Cosgrove DJ J Bacteriol; 1972 Oct; 112(1):434-8. PubMed ID: 4342816 [TBL] [Abstract][Full Text] [Related]
17. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica. Seshagiri S; Tallapragada P Pol J Microbiol; 2017 Jan; 65(4):407-412. PubMed ID: 28735324 [TBL] [Abstract][Full Text] [Related]
18. Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi. Gibson BR; Mitchell DT Mycol Res; 2004 Aug; 108(Pt 8):947-54. PubMed ID: 15449600 [TBL] [Abstract][Full Text] [Related]
19. Multifunctionalizing the marine diatom Phaeodactylum tricornutum for sustainable co-production of omega-3 long chain polyunsaturated fatty acids and recombinant phytase. Pudney A; Gandini C; Economou CK; Smith R; Goddard P; Napier JA; Spicer A; Sayanova O Sci Rep; 2019 Aug; 9(1):11444. PubMed ID: 31391507 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas corrugata (NRRL B-30409) Mutants Increased Phosphate Solubilization, Organic Acid Production, and Plant Growth at Lower Temperatures. Trivedi P; Sa T Curr Microbiol; 2008 Feb; 56(2):140-4. PubMed ID: 18026795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]