These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18663607)
1. The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Wei W; Chai T; Zhang Y; Han L; Xu J; Guan Z Mol Biotechnol; 2009 Jan; 41(1):15-21. PubMed ID: 18663607 [TBL] [Abstract][Full Text] [Related]
2. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Mizuno T; Usui K; Horie K; Nosaka S; Mizuno N; Obata H Plant Physiol Biochem; 2005 Aug; 43(8):793-801. PubMed ID: 16198592 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. Oomen RJ; Wu J; Lelièvre F; Blanchet S; Richaud P; Barbier-Brygoo H; Aarts MG; Thomine S New Phytol; 2009; 181(3):637-50. PubMed ID: 19054339 [TBL] [Abstract][Full Text] [Related]
4. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382 [TBL] [Abstract][Full Text] [Related]
5. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Gendre D; Czernic P; Conéjéro G; Pianelli K; Briat JF; Lebrun M; Mari S Plant J; 2007 Jan; 49(1):1-15. PubMed ID: 17144893 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of ZNT1 and NRAMP4 from the Ni Hyperaccumulator Fasani E; DalCorso G; Zorzi G; Agrimonti C; Fragni R; Visioli G; Furini A Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769323 [TBL] [Abstract][Full Text] [Related]
7. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Milner MJ; Kochian LV Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996 [TBL] [Abstract][Full Text] [Related]
8. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Ueno D; Milner MJ; Yamaji N; Yokosho K; Koyama E; Clemencia Zambrano M; Kaskie M; Ebbs S; Kochian LV; Ma JF Plant J; 2011 Jun; 66(5):852-62. PubMed ID: 21457363 [TBL] [Abstract][Full Text] [Related]
9. Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Liu GY; Zhang YX; Chai TY Plant Cell Rep; 2011 Jun; 30(6):1067-76. PubMed ID: 21327392 [TBL] [Abstract][Full Text] [Related]
10. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Thomine S; Wang R; Ward JM; Crawford NM; Schroeder JI Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4991-6. PubMed ID: 10781110 [TBL] [Abstract][Full Text] [Related]
11. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. Hu YT; Ming F; Chen WW; Yan JY; Xu ZY; Li GX; Xu CY; Yang JL; Zheng SJ PLoS One; 2012; 7(6):e38535. PubMed ID: 22761683 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). Küpper H; Kochian LV New Phytol; 2010 Jan; 185(1):114-29. PubMed ID: 19843304 [TBL] [Abstract][Full Text] [Related]
13. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Tiwari M; Sharma D; Dwivedi S; Singh M; Tripathi RD; Trivedi PK Plant Cell Environ; 2014 Jan; 37(1):140-52. PubMed ID: 23700971 [TBL] [Abstract][Full Text] [Related]
14. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Kaiser BN; Moreau S; Castelli J; Thomson R; Lambert A; Bogliolo S; Puppo A; Day DA Plant J; 2003 Aug; 35(3):295-304. PubMed ID: 12887581 [TBL] [Abstract][Full Text] [Related]
15. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens]. Liu G; Chai T; Sun T Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):561-8. PubMed ID: 20684297 [TBL] [Abstract][Full Text] [Related]
16. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Persans MW; Nieman K; Salt DE Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9995-10000. PubMed ID: 11481436 [TBL] [Abstract][Full Text] [Related]
17. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Pence NS; Larsen PB; Ebbs SD; Letham DL; Lasat MM; Garvin DF; Eide D; Kochian LV Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4956-60. PubMed ID: 10781104 [TBL] [Abstract][Full Text] [Related]
18. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775 [TBL] [Abstract][Full Text] [Related]
19. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671 [TBL] [Abstract][Full Text] [Related]
20. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Cohen CK; Garvin DF; Kochian LV Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]