These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1866373)
1. Structural requirements for the intestinal mucosal-cell peptide transporter: the need for N-terminal alpha-amino group. Bai PF; Subramanian P; Mosberg HI; Amidon GL Pharm Res; 1991 May; 8(5):593-9. PubMed ID: 1866373 [TBL] [Abstract][Full Text] [Related]
2. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme. Bai JP; Hu M; Subramanian P; Mosberg HI; Amidon GL J Pharm Sci; 1992 Feb; 81(2):113-6. PubMed ID: 1545347 [TBL] [Abstract][Full Text] [Related]
3. Peptide carrier-mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition. Yuasa H; Amidon GL; Fleisher D Pharm Res; 1993 Mar; 10(3):400-4. PubMed ID: 8464813 [TBL] [Abstract][Full Text] [Related]
4. Use of the peptide carrier system to improve the intestinal absorption of L-alpha-methyldopa: carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of L-alpha-methyldopa. Hu M; Subramanian P; Mosberg HI; Amidon GL Pharm Res; 1989 Jan; 6(1):66-70. PubMed ID: 2717522 [TBL] [Abstract][Full Text] [Related]
5. Intestinal absorption studies on peptide mimetic alpha-methyldopa prodrugs. Wang HP; Lu HH; Lee JS; Cheng CY; Mah JR; Ku CY; Hsu W; Yen CF; Lin CJ; Kuo HS J Pharm Pharmacol; 1996 Mar; 48(3):270-6. PubMed ID: 8737052 [TBL] [Abstract][Full Text] [Related]
6. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity. Foltz M; van Buren L; Klaffke W; Duchateau GS J Food Sci; 2009 Sep; 74(7):H243-51. PubMed ID: 19895477 [TBL] [Abstract][Full Text] [Related]
7. Visualized absorption of anti-atherosclerotic dipeptide, Trp-His, in Sprague-Dawley rats by LC-MS and MALDI-MS imaging analyses. Tanaka M; Hong SM; Akiyama S; Hu QQ; Matsui T Mol Nutr Food Res; 2015 Aug; 59(8):1541-9. PubMed ID: 25808120 [TBL] [Abstract][Full Text] [Related]
8. Structure-transport relationship for the intestinal small-peptide carrier: is the carbonyl group of the peptide bond relevant for transport? Schoenmakers RG; Stehouwer MC; Tukker JJ Pharm Res; 1999 Jan; 16(1):62-8. PubMed ID: 9950280 [TBL] [Abstract][Full Text] [Related]
10. Beta- and gamma-di- and tripeptides as potential substrates for the oligopeptide transporter hPepT1. Hubatsch I; Arvidsson PI; Seebach D; Luthman K; Artursson P J Med Chem; 2007 Oct; 50(21):5238-42. PubMed ID: 17887660 [TBL] [Abstract][Full Text] [Related]
11. [Ileal absorption of various amino acids and dipeptides in rats administered cyclophosphamide--using the short-circuit current method]. Hosoda T; Bamba T; Hosoda S Nihon Shokakibyo Gakkai Zasshi; 1991 Dec; 88(12):2837-46. PubMed ID: 1817194 [TBL] [Abstract][Full Text] [Related]
12. Absorption of intact peptides: studies on transport of protein digests and dipeptides across rat small intestine in vitro. Gardner ML Q J Exp Physiol; 1982 Oct; 67(4):629-37. PubMed ID: 7156317 [TBL] [Abstract][Full Text] [Related]
13. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Dantzig AH; Tabas LB; Bergin L Biochim Biophys Acta; 1992 Dec; 1112(2):167-73. PubMed ID: 1457450 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of dipeptide uptake by rat small intestine in vitro. Cheng B; Navab F; Lis MT; Miller TN; Matthews DM Clin Sci; 1971 Mar; 40(3):247-59. PubMed ID: 5550901 [No Abstract] [Full Text] [Related]
15. Kinetics of transport and metabolism of 1-beta-D-arabinofuranosylcytosine and structural analogs by everted perfused rat jejunum. Farghali H; Novotný L; Ryba M; Beránk J; Janků I Biochem Pharmacol; 1984 Feb; 33(4):655-62. PubMed ID: 6704182 [TBL] [Abstract][Full Text] [Related]
16. Passive and carrier-mediated intestinal absorption components of captopril. Hu M; Amidon GL J Pharm Sci; 1988 Dec; 77(12):1007-11. PubMed ID: 3072405 [TBL] [Abstract][Full Text] [Related]
17. Is intestinal peptide transport energized by a proton gradient? Ganapathy ; Leibach FH Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286 [TBL] [Abstract][Full Text] [Related]
18. Membrane permeability parameters for some amino acids and beta-lactam antibiotics: application of the boundary layer approach. Hu M; Sinko PJ; deMeere AL; Johnson DA; Amidon GL J Theor Biol; 1988 Mar; 131(1):107-14. PubMed ID: 3419188 [TBL] [Abstract][Full Text] [Related]
19. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics. Cao F; Gao Y; Wang M; Fang L; Ping Q Mol Pharm; 2013 Apr; 10(4):1378-87. PubMed ID: 23339520 [TBL] [Abstract][Full Text] [Related]
20. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system. Okano T; Inui K; Takano M; Hori R Biochem Pharmacol; 1986 Jun; 35(11):1781-6. PubMed ID: 3718527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]