These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18664286)

  • 1. A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based.
    Hillebrecht JR; Chong S
    BMC Biotechnol; 2008 Jul; 8():58. PubMed ID: 18664286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limiting factors of the translation machinery.
    Freischmidt A; Meysing M; Liss M; Wagner R; Kalbitzer HR; Horn G
    J Biotechnol; 2010 Oct; 150(1):44-50. PubMed ID: 20638424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts.
    Zárate X; Henderson DC; Phillips KC; Lake AD; Galbraith DW
    Proteome Sci; 2010 Jun; 8():32. PubMed ID: 20546627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and testing of E. coli S30 in vitro transcription translation extracts.
    Zawada JF
    Methods Mol Biol; 2012; 805():31-41. PubMed ID: 22094798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-Mr factor isolated from Escherichia coli inhibits eukaryotic in vitro protein synthesis.
    Skelly SM; Clark VL
    FEBS Lett; 1983 Oct; 162(1):16-20. PubMed ID: 6352334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system.
    Kolb VA; Makeyev EV; Spirin AS
    J Biol Chem; 2000 Jun; 275(22):16597-601. PubMed ID: 10748063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems.
    Zemella A; Thoring L; Hoffmeister C; Kubick S
    Chembiochem; 2015 Nov; 16(17):2420-31. PubMed ID: 26478227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of eukaryotic cell-free expression systems.
    Hartsough EM; Shah P; Larsen AC; Chaput JC
    Biotechniques; 2015 Sep; 59(3):149-51. PubMed ID: 26345507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency cell-free synthesis of proteins: refinement of the coupled transcription/translation system.
    Kudlicki W; Kramer G; Hardesty B
    Anal Biochem; 1992 Nov; 206(2):389-93. PubMed ID: 1332549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cell-free protein synthesis using a S30 extract from Escherichia coli grown rapidly at 42 degrees C in an amino acid enriched medium.
    Yamane T; Ikeda Y; Nagasaka T; Nakano H
    Biotechnol Prog; 2005; 21(2):608-13. PubMed ID: 15801806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic ribosome display selection using rabbit reticulocyte lysate.
    Douthwaite JA
    Methods Mol Biol; 2012; 805():45-57. PubMed ID: 22094799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Protein Synthesis Using S30 Extracts from
    Adachi J; Katsura K; Seki E; Takemoto C; Shirouzu M; Terada T; Mukai T; Sakamoto K; Yokoyama S
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance for random recombination of domains in prokaryotic and eukaryotic translation systems: Limited interdomain misfolding in a eukaryotic translation system.
    Hirano N; Sawasaki T; Tozawa Y; Endo Y; Takai K
    Proteins; 2006 Aug; 64(2):343-54. PubMed ID: 16708362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency.
    Siller E; DeZwaan DC; Anderson JF; Freeman BC; Barral JM
    J Mol Biol; 2010 Mar; 396(5):1310-8. PubMed ID: 20043920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC.
    Stemp MJ; Guha S; Hartl FU; Barral JM
    Biol Chem; 2005 Aug; 386(8):753-7. PubMed ID: 16201870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Screening of Cell-Free Extract from Nongrowing Escherichia coli A19 Cells.
    Hiering F; Failmezger J; Siemann-Herzberg M
    Methods Mol Biol; 2022; 2433():65-73. PubMed ID: 34985737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The E. coli S30 lysate proteome: A prototype for cell-free protein production.
    Foshag D; Henrich E; Hiller E; Schäfer M; Kerger C; Burger-Kentischer A; Diaz-Moreno I; García-Mauriño SM; Dötsch V; Rupp S; Bernhard F
    N Biotechnol; 2018 Jan; 40(Pt B):245-260. PubMed ID: 28943390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Providing an oxidizing environment for the cell-free expression of disulfide-containing proteins by exhausting the reducing activity of Escherichia coli S30 extract.
    Oh IS; Kim DM; Kim TW; Park CG; Choi CY
    Biotechnol Prog; 2006; 22(4):1225-8. PubMed ID: 16889403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free production of aggregation-prone proteins in soluble and active forms.
    Kang SH; Kim DM; Kim HJ; Jun SY; Lee KY; Kim HJ
    Biotechnol Prog; 2005; 21(5):1412-9. PubMed ID: 16209544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.