These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18664418)

  • 1. Contemporary perspectives on the niche that can improve models of species range shifts under climate change.
    Morin X; Lechowicz MJ
    Biol Lett; 2008 Oct; 4(5):573-6. PubMed ID: 18664418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.
    Morin X; Thuiller W
    Ecology; 2009 May; 90(5):1301-13. PubMed ID: 19537550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients.
    Monahan WB
    PLoS One; 2009 Nov; 4(11):e7921. PubMed ID: 19936234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate and land use change impacts on plant distributions in Germany.
    Pompe S; Hanspach J; Badeck F; Klotz S; Thuiller W; Kühn I
    Biol Lett; 2008 Oct; 4(5):564-7. PubMed ID: 18664416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine biological shifts and climate.
    Beaugrand G; Goberville E; Luczak C; Kirby RR
    Proc Biol Sci; 2014 May; 281(1783):20133350. PubMed ID: 24718760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of plant species distributions across six millennia.
    Pearman PB; Randin CF; Broennimann O; Vittoz P; van der Knaap WO; Engler R; Le Lay G; Zimmermann NE; Guisan A
    Ecol Lett; 2008 Apr; 11(4):357-69. PubMed ID: 18279357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America.
    Case MJ; Lawler JJ
    Glob Chang Biol; 2017 May; 23(5):2005-2015. PubMed ID: 27859937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology.
    Briscoe NJ; Morris SD; Mathewson PD; Buckley LB; Jusup M; Levy O; Maclean IMD; Pincebourde S; Riddell EA; Roberts JA; Schouten R; Sears MW; Kearney MR
    Glob Chang Biol; 2023 Mar; 29(6):1451-1470. PubMed ID: 36515542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model systems for a no-analog future: species associations and climates during the last deglaciation.
    Williams JW; Blois JL; Gill JL; Gonzales LM; Grimm EC; Ordonez A; Shuman B; Veloz SD
    Ann N Y Acad Sci; 2013 Sep; 1297():29-43. PubMed ID: 23981247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble forecasting of species distributions.
    Araújo MB; New M
    Trends Ecol Evol; 2007 Jan; 22(1):42-7. PubMed ID: 17011070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid shifts in distribution and high-latitude persistence of oceanographic habitat revealed using citizen science data from a climate change hotspot.
    Champion C; Hobday AJ; Tracey SR; Pecl GT
    Glob Chang Biol; 2018 Nov; 24(11):5440-5453. PubMed ID: 30003633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A globally coherent fingerprint of climate change impacts across natural systems.
    Parmesan C; Yohe G
    Nature; 2003 Jan; 421(6918):37-42. PubMed ID: 12511946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics.
    Oldfather MF; Kling MM; Sheth SN; Emery NC; Ackerly DD
    Glob Chang Biol; 2020 Mar; 26(3):1055-1067. PubMed ID: 31674701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial analysis improves species distribution modelling during range expansion.
    De Marco P; Diniz-Filho JA; Bini LM
    Biol Lett; 2008 Oct; 4(5):577-80. PubMed ID: 18664417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Racing against change: understanding dispersal and persistence to improve species' conservation prospects.
    Kerr JT
    Proc Biol Sci; 2020 Nov; 287(1939):20202061. PubMed ID: 33234075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The macroecological contribution to global change solutions.
    Kerr JT; Kharouba HM; Currie DJ
    Science; 2007 Jun; 316(5831):1581-4. PubMed ID: 17569854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.
    Aguilée R; Raoul G; Rousset F; Ronce O
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):E5741-8. PubMed ID: 27621443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change can cause spatial mismatch of trophically interacting species.
    Schweiger O; Settele J; Kudrna O; Klotz S; Kühn I
    Ecology; 2008 Dec; 89(12):3472-9. PubMed ID: 19137952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.