These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18665213)

  • 1. A model for the detection of moving targets in visual clutter inspired by insect physiology.
    Wiederman SD; Shoemaker PA; O'Carroll DC
    PLoS One; 2008 Jul; 3(7):e2784. PubMed ID: 18665213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear, neuronal adaptation in insect vision models improves target discrimination within repetitively moving backgrounds.
    James JV; Cazzolato BS; Grainger S; Wiederman SD
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34555824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of features in natural scenes by a dragonfly neuron.
    Wiederman SD; O'Carroll DC
    J Neurosci; 2011 May; 31(19):7141-4. PubMed ID: 21562276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes.
    Evans BJE; O'Carroll DC; Fabian JM; Wiederman SD
    Front Cell Neurosci; 2022; 16():857071. PubMed ID: 35450210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust Visual System for Small Target Motion Detection Against Cluttered Moving Backgrounds.
    Wang H; Peng J; Zheng X; Yue S
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):839-853. PubMed ID: 31056526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of motion inhibition for the suppression of false positives in biologically inspired small target detection algorithms from a moving platform.
    Melville-Smith A; Finn A; Uzair M; Brinkworth RSA
    Biol Cybern; 2022 Dec; 116(5-6):661-685. PubMed ID: 36305942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical study of neural feedback roles in small target motion detection.
    Ling J; Wang H; Xu M; Chen H; Li H; Peng J
    Front Neurorobot; 2022; 16():984430. PubMed ID: 36203523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural computation of motion in the fly visual system: quadratic nonlinearity of responses induced by picrotoxin in the HS and CH cells.
    Kondoh Y; Hasegawa Y; Okuma J; Takahashi F
    J Neurophysiol; 1995 Dec; 74(6):2665-84. PubMed ID: 8747223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds.
    Fu Q; Yue S
    Biol Cybern; 2020 Oct; 114(4-5):443-460. PubMed ID: 32623517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptor processing improves salience facilitating small target detection in cluttered scenes.
    Brinkworth RS; Mah EL; Gray JP; O'Carroll DC
    J Vis; 2008 Aug; 8(11):8.1-17. PubMed ID: 18831602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
    Barnett PD; Nordström K; O'carroll DC
    Curr Biol; 2007 Apr; 17(7):569-78. PubMed ID: 17363248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial facilitation by a high-performance dragonfly target-detecting neuron.
    Nordström K; Bolzon DM; O'Carroll DC
    Biol Lett; 2011 Aug; 7(4):588-92. PubMed ID: 21270026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
    Geurten BR; Nordström K; Sprayberry JD; Bolzon DM; O'Carroll DC
    J Exp Biol; 2007 Sep; 210(Pt 18):3277-84. PubMed ID: 17766305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired figure-ground discrimination via visual motion smoothing.
    Wu Z; Guo A
    PLoS Comput Biol; 2023 Apr; 19(4):e1011077. PubMed ID: 37083880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving object detection based on bioinspired background subtraction.
    Zheng Z; Guo A; Wu Z
    Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38917814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of neuronal facilitation that improve target tracking in natural pursuit simulations.
    Bagheri ZM; Wiederman SD; Cazzolato BS; Grainger S; O'Carroll DC
    J R Soc Interface; 2015 Jul; 12(108):20150083. PubMed ID: 26063815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention and Prediction-Guided Motion Detection for Low-Contrast Small Moving Targets.
    Wang H; Zhao J; Wang H; Hu C; Peng J; Yue S
    IEEE Trans Cybern; 2023 Oct; 53(10):6340-6352. PubMed ID: 35533156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature detection and the hypercomplex property in insects.
    Nordström K; O'Carroll DC
    Trends Neurosci; 2009 Jul; 32(7):383-91. PubMed ID: 19541374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system.
    Wiederman SD; Shoemaker PA; O'Carroll DC
    J Neurosci; 2013 Aug; 33(32):13225-32. PubMed ID: 23926274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.