These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18665233)

  • 1. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.
    Crewther SG; Murphy MJ; Crewther DP
    PLoS One; 2008 Jul; 3(7):e2839. PubMed ID: 18665233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retina/RPE proteome in chick myopia and hyperopia models: Commonalities with inherited and age-related ocular pathologies.
    Riddell N; Faou P; Murphy M; Giummarra L; Downs RA; Rajapaksha H; Crewther SG
    Mol Vis; 2017; 23():872-888. PubMed ID: 29259393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active ion transport pathways in the bovine retinal pigment epithelium.
    Miller SS; Edelman JL
    J Physiol; 1990 May; 424():283-300. PubMed ID: 1697344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency.
    Chee KN; Vorontsova I; Lim JC; Kistler J; Donaldson PJ
    Mol Vis; 2010 May; 16():800-12. PubMed ID: 20458365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous defocus integration during refractive development.
    Tse DY; Lam CS; Guggenheim JA; Lam C; Li KK; Liu Q; To CH
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5352-9. PubMed ID: 18055781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance.
    Riddell N; Faou P; Crewther SG
    BMC Dev Biol; 2018 Aug; 18(1):18. PubMed ID: 30157773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colchicine attenuates compensation to negative but not to positive lenses in young chicks.
    Choh V; Padmanabhan V; Li WS; Sullivan AB; Wildsoet CF
    Exp Eye Res; 2008 Feb; 86(2):260-70. PubMed ID: 18078935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constant light rearing disrupts compensation to imposed- but not induced-hyperopia and facilitates compensation to imposed myopia in chicks.
    Padmanabhan V; Shih J; Wildsoet CF
    Vision Res; 2007 Jun; 47(14):1855-68. PubMed ID: 17512028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na-K-2Cl cotransporter inhibition impairs human lung cellular proliferation.
    Iwamoto LM; Fujiwara N; Nakamura KT; Wada RK
    Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L510-4. PubMed ID: 15155267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of retinal ON/OFF systems differentially affects refractive compensation to defocus.
    Crewther SG; Crewther DP
    Neuroreport; 2003 Jul; 14(9):1233-7. PubMed ID: 12824766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectacle lens compensation in the pigmented guinea pig.
    Howlett MH; McFadden SA
    Vision Res; 2009 Jan; 49(2):219-27. PubMed ID: 18992765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
    Wildsoet C; Wallman J
    Vision Res; 1995 May; 35(9):1175-94. PubMed ID: 7610579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of Cl⁻ transporter and channels in experimentally induced myopic chick eyes.
    Zhang H; Wong CL; Shan SW; Li KK; Cheng AK; Lee KL; Ge J; To CH; Do CW
    Clin Exp Optom; 2011 Nov; 94(6):528-35. PubMed ID: 21895767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal whole field sawtooth flicker without a spatial component elicits a myopic shift following optical defocus irrespective of waveform direction in chicks.
    Murphy MJ; Riddell N; Crewther DP; Simpson D; Crewther SG
    PeerJ; 2019; 7():e6277. PubMed ID: 30697484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.
    Lauf PK; Misri S; Chimote AA; Adragna NC
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C820-32. PubMed ID: 18184876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD.
    Liu W; Schreck C; Coleman RA; Wade JB; Hernandez Y; Zavilowitz B; Warth R; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1088-97. PubMed ID: 21816753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of the Na+/K+-ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo.
    Louie JC; Fujii N; Meade RD; Kenny GP
    Physiol Rep; 2016 Nov; 4(22):. PubMed ID: 27881572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light modulation, not choroidal vasomotor action, is a regulator of refractive compensation to signed optical blur.
    Murphy MJ; Crewther DP; Goodyear MJ; Crewther SG
    Br J Pharmacol; 2011 Nov; 164(6):1614-26. PubMed ID: 21418189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interrupted lens wear on compensation for a minus lens in tree shrews.
    Shaikh AW; Siegwart JT; Norton TT
    Optom Vis Sci; 1999 May; 76(5):308-15. PubMed ID: 10375247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K
    Rubino JG; Wilson JM; Wood CM
    J Comp Physiol B; 2019 Oct; 189(5):549-566. PubMed ID: 31486919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.