These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 18665297)
1. Target-selective degradation of proteins by porphyrins upon visible photo-irradiation. Tanimoto S; Matsumura S; Toshima K Chem Commun (Camb); 2008 Aug; (31):3678-80. PubMed ID: 18665297 [TBL] [Abstract][Full Text] [Related]
2. Target-selective photo-degradation of verotoxin-1 and reduction of its cytotoxicity to Vero cells using porphyrin-globotriose hybrids. Okochi A; Tanimoto S; Takahashi D; Toshima K Chem Commun (Camb); 2013 Jul; 49(54):6027-9. PubMed ID: 23722161 [TBL] [Abstract][Full Text] [Related]
3. Molecular design, chemical synthesis, and biological evaluation of agents that selectively photo-degrade the transcription factor estrogen receptor-α. Tsumura K; Suzuki A; Tsuzuki T; Tanimoto S; Kaneko H; Matsumura S; Imoto M; Umezawa K; Takahashi D; Toshima K Org Biomol Chem; 2011 Sep; 9(18):6357-66. PubMed ID: 21789304 [TBL] [Abstract][Full Text] [Related]
4. Chemical methods for degradation of target proteins using designed light-activatable organic molecules. Tanimoto S; Takahashi D; Toshima K Chem Commun (Camb); 2012 Aug; 48(62):7659-71. PubMed ID: 22739361 [TBL] [Abstract][Full Text] [Related]
5. Target-selective degradation of proteins by a light-activated 2-phenylquinoline-estradiol hybrid. Suzuki A; Tsumura K; Tsuzuki T; Matsumura S; Toshima K Chem Commun (Camb); 2007 Nov; (41):4260-2. PubMed ID: 18217599 [TBL] [Abstract][Full Text] [Related]
6. A new Phenol Red-modified porphyrin as efficient protein photocleaving agent. Jiang GY; Lei WH; Zhou QX; Hou YJ; Wang XS; Zhang BW Phys Chem Chem Phys; 2010 Oct; 12(38):12229-36. PubMed ID: 20714577 [TBL] [Abstract][Full Text] [Related]
7. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives. Hirabayashi A; Shindo Y; Oka K; Takahashi D; Toshima K Chem Commun (Camb); 2014 Aug; 50(67):9543-6. PubMed ID: 25012260 [TBL] [Abstract][Full Text] [Related]
8. Interaction peculiarities of 5,10,15,20-tetrakis(4-N-methylpyridil) tetra iodide porphyrin with albumin. Lebedeva NSh; Malkova EA; Popova TE; Kutyrev AE; Syrbu SA; Parfenyuk EV; Vyugin AI Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():395-8. PubMed ID: 24076455 [TBL] [Abstract][Full Text] [Related]
9. Assessment of new cationic porphyrin binding to plasma proteins by planar microarray and spectroscopic methods. Gyulkhandanyan A; Gyulkhandanyan L; Ghazaryan R; Fleury F; Angelini M; Gyulkhandanyan G; Sakanyan V J Biomol Struct Dyn; 2013 Apr; 31(4):363-75. PubMed ID: 22871064 [TBL] [Abstract][Full Text] [Related]
10. Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS Gonçalves PJ; Bezerra FC; Almeida LM; Alonso L; Souza GRL; Alonso A; Zílio SC; Borissevitch IE Eur Biophys J; 2019 Dec; 48(8):721-729. PubMed ID: 31549191 [TBL] [Abstract][Full Text] [Related]
11. [Interaction of new pyridylporphyrins with bovine serum albumin]. Karapetian NG; Madakian VN Bioorg Khim; 2004; 30(2):195-200. PubMed ID: 15143676 [TBL] [Abstract][Full Text] [Related]
12. Study on the interaction between carbonyl-fused N-confused porphyrin and bovine serum albumin by spectroscopic techniques. Yu X; Liao Z; Jiang B; Zheng L; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():372-7. PubMed ID: 24967543 [TBL] [Abstract][Full Text] [Related]
13. Cationic pyridinium porphyrins appending different peripheral substituents: spectroscopic studies on their interactions with bovine serum albumin. Zhao P; Huang JW; Ji LN Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():130-6. PubMed ID: 22226898 [TBL] [Abstract][Full Text] [Related]
14. Sugar-dependent photodynamic effect of glycoconjugated porphyrins: a study on photocytotoxicity, photophysical properties and binding behavior to bovine serum albumin (BSA). Obata M; Hirohara S; Sharyo K; Alitomo H; Kajiwara K; Ogata S; Tanihara M; Ohtsuki C; Yano S Biochim Biophys Acta; 2007 Aug; 1770(8):1204-11. PubMed ID: 17490818 [TBL] [Abstract][Full Text] [Related]
15. Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid. Tanimoto S; Sakai S; Matsumura S; Takahashi D; Toshima K Chem Commun (Camb); 2008 Nov; (44):5767-9. PubMed ID: 19009075 [TBL] [Abstract][Full Text] [Related]
16. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin. Silvester JA; Timmins GS; Davies MJ Arch Biochem Biophys; 1998 Feb; 350(2):249-58. PubMed ID: 9473299 [TBL] [Abstract][Full Text] [Related]
17. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Yu X; Liu R; Yi R; Yang F; Huang H; Chen J; Ji D; Yang Y; Li X; Yi P Spectrochim Acta A Mol Biomol Spectrosc; 2011 Apr; 78(4):1329-35. PubMed ID: 21306939 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic investigation on the intermolecular interaction between N-confused porphyrins-(3-methylisoxazole) diad and bovine serum albumin. Lu S; Yu X; Yang Y; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():116-21. PubMed ID: 23063853 [TBL] [Abstract][Full Text] [Related]
19. Specific Buffer Effects on the Intermolecular Interactions among Protein Molecules at Physiological pH. Salis A; Cappai L; Carucci C; Parsons DF; Monduzzi M J Phys Chem Lett; 2020 Aug; 11(16):6805-6811. PubMed ID: 32787211 [TBL] [Abstract][Full Text] [Related]
20. [Study on interaction mechanism between meso-tetra-(4-hydroxyphenyl)-Zn porphyrin and bovine serum albumin by fluorescence method]. Zhang LN; Chen X; Xia Y; Wu D; Yu JH; Du B; Wei Q Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):773-6. PubMed ID: 19455821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]