BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18665399)

  • 1. Exploring CYP1A1 as anticancer target: homology modeling and in silico inhibitor design.
    Sangamwar AT; Labhsetwar LB; Kuberkar SV
    J Mol Model; 2008 Nov; 14(11):1101-9. PubMed ID: 18665399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling of cytochrome P450 1A1: enzyme-substrate interactions and substrate binding affinities.
    Szklarz GD; Paulsen MD
    J Biomol Struct Dyn; 2002 Oct; 20(2):155-62. PubMed ID: 12354067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of human cytochrome P450 1A1 with bergamottin and erlotinib reveal active-site modifications for binding of diverse ligands.
    Bart AG; Scott EE
    J Biol Chem; 2018 Dec; 293(50):19201-19210. PubMed ID: 30254074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2.
    Sansen S; Yano JK; Reynald RL; Schoch GA; Griffin KJ; Stout CD; Johnson EF
    J Biol Chem; 2007 May; 282(19):14348-55. PubMed ID: 17311915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1.
    Jerabek P; Martinek V; Stiborova M
    Neuro Endocrinol Lett; 2012; 33 Suppl 3():25-32. PubMed ID: 23353840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen.
    Stiborová M; Sopko B; Hodek P; Frei E; Schmeiser HH; Hudecek J
    Cancer Lett; 2005 Nov; 229(2):193-204. PubMed ID: 16125300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations.
    Kesharwani SS; Nandekar PP; Pragyan P; Rathod V; Sangamwar AT
    J Mol Recognit; 2016 Aug; 29(8):370-90. PubMed ID: 26916064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism.
    Walsh AA; Szklarz GD; Scott EE
    J Biol Chem; 2013 May; 288(18):12932-43. PubMed ID: 23508959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date.
    Sridhar J; Goyal N; Liu J; Foroozesh M
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28698457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation, validation, and application of a P450 homology model.
    Lewis BC; Miners JO
    Curr Top Med Chem; 2013; 13(18):2233-40. PubMed ID: 24047137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis.
    Lewis BC; Mackenzie PI; Miners JO
    Arch Biochem Biophys; 2007 Dec; 468(1):58-69. PubMed ID: 17959138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ.
    Lozano JJ; López-de-Briñas E; Centeno NB; Guigó R; Sanz F
    J Comput Aided Mol Des; 1997 Jul; 11(4):395-408. PubMed ID: 9334905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 Binding and Bioactivation of Tumor-Targeted Duocarmycin Agents.
    Bart AG; Morais G; Vangala VR; Loadman PM; Pors K; Scott EE
    Drug Metab Dispos; 2022 Jan; 50(1):49-57. PubMed ID: 34607808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of molecular modeling for prediction of substrate specificity in cytochrome P450 1A2 mutants.
    Tu Y; Deshmukh R; Sivaneri M; Szklarz GD
    Drug Metab Dispos; 2008 Nov; 36(11):2371-80. PubMed ID: 18703643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modelling of CYP1 family enzymes CYP1A1, CYP1A2, CYP1A6 and CYP1B1 based on sequence homology with CYP102.
    Lewis DF; Lake BG; George SG; Dickins M; Eddershaw PJ; Tarbit MH; Beresford AP; Goldfarb PS; Guengerich FP
    Toxicology; 1999 Nov; 139(1-2):53-79. PubMed ID: 10614688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings.
    Nandekar PP; Sangamwar AT
    Expert Opin Drug Discov; 2012 Sep; 7(9):771-89. PubMed ID: 22716293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1.
    Uehara S; Uno Y; Inoue T; Sasaki E; Yamazaki H
    Drug Metab Dispos; 2016 Jan; 44(1):8-15. PubMed ID: 26502772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450 1A1 opens up to new substrates.
    Munro AW
    J Biol Chem; 2018 Dec; 293(50):19211-19212. PubMed ID: 30552114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking.
    Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H
    Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and functional analysis of cytochrome P450 1A2 from Japanese monkey liver: comparison with marmoset cytochrome P450 1A2.
    Narimatsu S; Oda M; Hichiya H; Isobe T; Asaoka K; Hanioka N; Yamano S; Shinoda S; Yamamoto S
    Chem Biol Interact; 2005 Feb; 152(1):1-12. PubMed ID: 15766918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.