BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18666005)

  • 1. Validation of a novel method to determine non-invasively the rate of central aortic pressure changes.
    Gorenberg M; Marmor A
    J Med Eng Technol; 2008; 32(4):257-62. PubMed ID: 18666005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery.
    Gorenberg M; Rotztein H; Marmor A
    Cardiovasc Eng; 2009 Mar; 9(1):27-31. PubMed ID: 19259812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics.
    Hope SA; Meredith IT; Cameron JD
    Clin Sci (Lond); 2004 Aug; 107(2):205-11. PubMed ID: 15139848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of central aortic pressure by SphygmoCor requires intra-arterial peripheral pressures.
    Cloud GC; Rajkumar C; Kooner J; Cooke J; Bulpitt CJ
    Clin Sci (Lond); 2003 Aug; 105(2):219-25. PubMed ID: 12710885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of left ventricular performance through temporal pressure variations measured by MR velocity and acceleration mappings.
    Tasu JP; Mousseaux E; Colin P; Slama MS; Jolivet O; Bittoun J
    J Magn Reson Imaging; 2002 Sep; 16(3):246-52. PubMed ID: 12205579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff.
    Nguyen XP; Kronemayer R; Herrmann P; Mejía A; Daw Z; Nguyen XD; Kränzlin B; Gretz N
    Biomed Tech (Berl); 2011 Jun; 56(3):153-8. PubMed ID: 21657988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of non-invasive measurements of arterial blood pressure in frequency and time-domain estimates of cardiac baroreflex sensitivity.
    Smith SM; Samani NJ; Sammons EL; Rathbone WE; Potter JF; Bentley S; Panerai RB
    J Hypertens; 2008 Jan; 26(1):76-82. PubMed ID: 18090543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate automatic detection of end-diastole from left ventricular pressure using peak curvature.
    Mynard JP; Penny DJ; Smolich JJ
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2651-7. PubMed ID: 18990636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recording of dynamic arterial compliance changes during hand elevation.
    Jagomägi K; Raamat R; Talts J; Ragun U; Länsimies E; Jurvelin J
    Clin Physiol Funct Imaging; 2005 Nov; 25(6):350-6. PubMed ID: 16268987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff.
    Trachet B; Reymond P; Kips J; Swillens A; De Buyzere M; Suys B; Stergiopulos N; Segers P
    Ann Biomed Eng; 2010 Mar; 38(3):876-88. PubMed ID: 20127171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal aortic distension waveforms for evaluating cardiac function and changes in blood pressure: fetal lamb validation.
    Fujita Y; Satoh S; Yumoto Y; Koga T; Kinukawa N; Nakano H
    J Obstet Gynaecol Res; 2006 Apr; 32(2):155-61. PubMed ID: 16594918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Data processing system for laboratory and hemodynamic heart catheterization measurements].
    Jensch P; Meyer J; Mattar E; Ameling W; Effert S
    Z Kardiol; 1976 Oct; 65(10):850-81. PubMed ID: 997705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis.
    Rajani R; Chowienczyk P; Redwood S; Guilcher A; Chambers JB
    J Hypertens; 2008 Dec; 26(12):2381-8. PubMed ID: 19008716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of a new transducer tipped catheter.
    Kar S; Drury JK; Tokioka H; Meerbaum S; Corday E
    Indian Heart J; 1989; 41(4):213-20. PubMed ID: 2807355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optimized V-V interval determined by interventricular conduction times versus invasive measurement by LVdP/dtMAX.
    van Gelder BM; Meijer A; Bracke FA
    J Cardiovasc Electrophysiol; 2008 Sep; 19(9):939-44. PubMed ID: 18399968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relations between the timing of the second heart sound and aortic blood pressure.
    Zhang XY; MacPherson E; Zhang YT
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1291-7. PubMed ID: 18390320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparison between brachial blood pressures obtained by aneroid sphygmomanometer and central aortic pressures: factors affecting the measurements].
    Kayrak M; Ulgen MS; Yazici M; Demir K; Doğan Y; Koç F; Zengin K; Ari H
    Turk Kardiyol Dern Ars; 2008 Jun; 36(4):239-46. PubMed ID: 18765967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of generalized transfer function-derived central blood pressure for the calculation of baroreflex gain.
    Studinger P; Ungi I; Lénárd Z; Mersich B; Rudas L; Kollai M
    J Hypertens; 2008 Jun; 26(6):1156-62. PubMed ID: 18475153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.